煤矿智能监测与预警技术研究现状与发展趋势

郑学召, 童鑫, 郭军, 张铎

郑学召,童鑫,郭军,等.煤矿智能监测与预警技术研究现状与发展趋势[J].工矿自动化,2020,46(6):35-40.. DOI: 10.13272/j.issn.1671-251x.17530
引用本文: 郑学召,童鑫,郭军,等.煤矿智能监测与预警技术研究现状与发展趋势[J].工矿自动化,2020,46(6):35-40.. DOI: 10.13272/j.issn.1671-251x.17530
ZHENG Xuezhao, TONG Xin, GUO Jun, ZHANG Duo. Research status and development trend of intelligent monitoring and early warning technology in coal mine[J]. Journal of Mine Automation, 2020, 46(6): 35-40. DOI: 10.13272/j.issn.1671-251x.17530
Citation: ZHENG Xuezhao, TONG Xin, GUO Jun, ZHANG Duo. Research status and development trend of intelligent monitoring and early warning technology in coal mine[J]. Journal of Mine Automation, 2020, 46(6): 35-40. DOI: 10.13272/j.issn.1671-251x.17530

煤矿智能监测与预警技术研究现状与发展趋势

基金项目: 

国家重点研发计划重点专项项目(2018YFC0808201)

陕西省自然科学基础研究计划项目(2018JM5009,2018JQ5080)

详细信息
  • 中图分类号: TD76

Research status and development trend of intelligent monitoring and early warning technology in coal mine

  • 摘要: 从物联网、大数据、云计算及人工智能方面综述了我国煤矿智能监测与预警技术的研究现状。针对煤矿智能监测技术的实际应用情况,指出了煤矿智能监测与预警存在井下煤矿监测设备前兆信息采集可靠性差、云端平台集成应用融合深度不够、数据库安全性较弱、人工智能技术在煤矿监测中的应用尚不成熟等问题。展望了煤矿智能监测与预警技术的发展趋势:煤矿智能监测系统应用石墨烯/氧化石墨烯光纤传感器可实现多源信息感知,提升前兆信息采集的可靠性;研究多技术深度交叉融合技术,以探究监测数据的深层价值;构建基于区块链技术的煤矿监测数据库,保证数据库不可篡改,且具有较好的读写性能;研发具备自适应和深度学习的煤矿智能安全监测预警系统,实现矿井自动监测、智能预警。
    Abstract: The research status of intelligent monitoring and early warning technology in coal mine in China was summarized from the aspects of Internet of things, big data, cloud computing and artificial intelligence.According to practical application of intelligent monitoring technology in coal mine, the problems of intelligent monitoring and early warning in coal mine was points out, including poor reliability of precursory information collection of underground coal mine monitoring equipment, insufficient depth of cloud platform integrated application and fusion, weak database security, and immature application of artificial intelligence technology in coal mine monitoring.The development trend of intelligent monitoring and early warning technology in coal mine was prospected: the application of graphene/graphene oxide optical fiber sensors in intelligent monitoring system of coal mine can realize multi-source information perception and improve the reliability of precursory information collection; studying multi-technology deep cross fusion to explore deep value of monitoring data; constructing coal mine monitoring database based on block chain technology, ensuring that the database cannot be tampered and has good read and write performance; developing intelligent safety monitoring and warning system with adaptive and deep learning, realizing mine automatic monitoring and intelligent early warning.
  • 期刊类型引用(10)

    1. 常城,舒志兵,陈守林,张之裕. 基于UWB的智能巡检机器人定位系统研究. 机床与液压. 2024(09): 22-29 . 百度学术
    2. 吕猛. 基于无线传感技术的煤矿机械设备运行状态监测系统. 能源与环保. 2023(03): 227-232 . 百度学术
    3. 杨帆,柯政亭,翁蔚,江云辉,方毅,张聪伟. 基于便携式智能传感技术的配电设备监测及预警研究. 计算技术与自动化. 2022(03): 32-36 . 百度学术
    4. 温圣军,韩春晓,袁刚,丰苏. 主动式通信网络性能自动监测方法. 自动化技术与应用. 2022(10): 142-145 . 百度学术
    5. 孙彦景,霍羽,陈岩,王博文,周家思,张晓光. 矿山动态协同作业场景无线通信关键技术. 煤炭学报. 2021(01): 321-332 . 百度学术
    6. 周德胜. 基于LoRa的矿用无线通信系统设计. 煤矿安全. 2021(04): 170-173 . 百度学术
    7. 赵驭阳. 基于DAG-SVM的煤矿井下输送装置故障在线检测. 机床与液压. 2021(10): 189-194 . 百度学术
    8. 贾荣谷. 基于无线传感网络的边坡位移预警系统设计. 电子设计工程. 2020(10): 97-101 . 百度学术
    9. 杨俊秋,王艳芬,王倩玉,陈晓晶,刘丰祯,孙彦景. 基于802.11ah井下监测传感网的RAW重分组研究. 工矿自动化. 2020(05): 69-75 . 本站查看
    10. 唐振中,郑思,张静. IEEE 802.11ah关键技术分析与应用. 科技创新与应用. 2019(34): 146-147 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  421
  • HTML全文浏览量:  41
  • PDF下载量:  34
  • 被引次数: 17
出版历程
  • 刊出日期:  2020-06-19

目录

    /

    返回文章
    返回