Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm
-
摘要: 针对基于UWB精确定位的井下近感检测装置定位结果易受非视距(NLOS)误差等噪声影响的问题,提出了一种基于卡尔曼滤波和加权LM法的井下精确定位算法。通过卡尔曼滤波预测过程得到标签卡坐标的先验估计值;利用几何关系计算估计坐标与各锚节点的距离,并将该距离与探测器直接测距值进行比较,根据差值分配各锚节点的测距权值;将权值矩阵和测距矩阵代入加权LM法中,得到标签卡坐标的中间结果;将中间结果作为测量值代入卡尔曼滤波更新过程中,得到标签卡的最终坐标。测试结果表明,与多边定位法相比,基于卡尔曼滤波和加权LM法的井下精确定位算法可在不影响定位速度的前提下,将定位精度提高一倍以上,有效降低了NLOS误差等噪声的干扰。Abstract: In view of problem that positioning result of underground proximity detection device based on UWB precise positioning is susceptible to noise such as non-line of sight (NLOS) error, an underground precise positioning algorithm based on Kalman filter and weighted LM algorithm was proposed. Priori estimation value of tag card coordinates is obtained by Kalman filter prediction process; distance between the estimatied coordinates and each anchor node is calculated by using geometric relationship, the calculated distance is compared with direct measuring value of the detector, and ranging weight of each anchor node is allocated according to difference of the calculated distance and measured distance; weight matrix and ranging matrix are substituted into the weighted LM algorithm as the measured value to obtain intermediate result of the tag card coordinates; the intermediate result is substituted into Kalman filter update process to obtain final coordinates of the tag card. The test results show that compared with the multilateral positioning method, the underground precise positioning algorithm based on Kalman filter and weighted LM algorithm can improve positioning accuracy by more than one time without affecting positioning speed, and effectively reducing the interference of NLOS error and other noises.
-
-
期刊类型引用(12)
1. 王占宝,刘小杰,刘鹏. 基于Grey-DEMATEL的煤矿隐患关键因素研究. 中国安全科学学报. 2024(S1): 39-45 . 百度学术
2. 董军,王伟权,夏天文. 煤矿井下人员超宽带定位的联合解算方法. 黑龙江科技大学学报. 2023(03): 464-469 . 百度学术
3. 王永刚,刘惠春. 民航安全管理体系与双重预防机制对比研究. 综合运输. 2023(09): 22-27+69 . 百度学术
4. 赵梦洁,杨玉中. 基于组合赋权—灰色VIKOR的煤矿隐患排查治理能力评估研究. 矿业安全与环保. 2023(06): 141-146 . 百度学术
5. 刘茜. 大数据下煤矿安全风险评价研究. 河北企业. 2022(09): 68-70 . 百度学术
6. 田晓红,何新卫. 基于大数据的煤矿安全风险智能评价和预警研究. 微型电脑应用. 2022(12): 146-149 . 百度学术
7. 赵安新,张育刚,韩安,徐战,王安义. 基于层次分析法的煤矿分级分层安全状态评估方法. 煤炭技术. 2021(03): 162-165 . 百度学术
8. 朱宏博. 煤矿安全隐患采集决策智能防控系统设计. 机电工程技术. 2021(04): 71-73 . 百度学术
9. 逄明祥,王善培,李乾,程学珍. 一种基于遗传神经网络的煤矿井下定位算法. 实验室研究与探索. 2021(04): 8-12 . 百度学术
10. 王道元,王俊,孟志斌,张雪峰,李敬兆. 煤矿安全风险智能分级管控与信息预警系统. 煤炭科学技术. 2021(10): 136-144 . 百度学术
11. 张洋杰. 煤炭行业安全形势分析. 煤炭经济研究. 2020(01): 63-66 . 百度学术
12. 郭孝园. 煤矿安全隐患风险评价分析. 内蒙古煤炭经济. 2020(06): 125-126 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 124
- HTML全文浏览量: 21
- PDF下载量: 21
- 被引次数: 20