基于视频图像的矿井水灾识别及趋势预测方法研究

孙继平, 靳春海, 曹玉超

孙继平,靳春海,曹玉超.基于视频图像的矿井水灾识别及趋势预测方法研究[J].工矿自动化,2019,45(7):1-4.. DOI: 10.13272/j.issn.1671-251x.17459
引用本文: 孙继平,靳春海,曹玉超.基于视频图像的矿井水灾识别及趋势预测方法研究[J].工矿自动化,2019,45(7):1-4.. DOI: 10.13272/j.issn.1671-251x.17459
SUN Jiping, JIN Chunhai, CAO Yuchao. Research on mine flood identification and trend prediction method based on video image[J]. Journal of Mine Automation, 2019, 45(7): 1-4. DOI: 10.13272/j.issn.1671-251x.17459
Citation: SUN Jiping, JIN Chunhai, CAO Yuchao. Research on mine flood identification and trend prediction method based on video image[J]. Journal of Mine Automation, 2019, 45(7): 1-4. DOI: 10.13272/j.issn.1671-251x.17459

基于视频图像的矿井水灾识别及趋势预测方法研究

基金项目: 

国家重点研发计划资助项目(2016YFC0801800)

详细信息
  • 中图分类号: TD745

Research on mine flood identification and trend prediction method based on video image

  • 摘要: 分析了矿井水灾视频图像特征,提出了基于视频图像的矿井水灾识别及趋势预测方法,包括水灾视频动态识别、区域分割、面积估算及趋势预测,并通过了试验验证,得出如下主要结论: ① 阈值像素灰度统计法和像素灰度值统计法均可监测和识别水灾,阈值像素灰度统计法不但可抑制低于灰度阈值的噪声,提高识别的准确性,还可减少像素灰度统计数,增强特定像素灰度范围的对比度。② 阈值分割法和视频差分分割法均可分割水灾区域图像,前者整体性较好,后者细节刻画更强。③ 根据分割出的水灾区域图像可估算突水区域面积及进行趋势预测。
    Abstract: The characteristics of mine flood video images were analyzed. The mine flood identification and trend prediction methods based on video images were proposed, including flood video dynamic identification, region segmentation, area estimation and trend prediction. The results were verified by experiments. The main conclusions are as follows: ① Both threshold pixel grayscale statistical method and pixel grayscale statistical method can monitor and identify floods. The threshold pixel grayscale statistical method not only can suppresses noise below the grayscale threshold and improve the accuracy of recognition, but also can reduce the pixel grayscale statistics, enhance contrast of a particular pixel grayscale range. ② Both the threshold segmentation method and the video differential segmentation method can segment the image of the flood area, the former is better overall and the latter is more detailed.③ The area of the water inrush area can be estimated and the trend can be forecast based on the segmented flood area image.
  • 期刊类型引用(5)

    1. 朱劲磊,梁均海,付志超,欧嘉俊,滕俊. 基于TDOA算法的基建现场施工人员定位研究. 自动化仪表. 2024(04): 9-13 . 百度学术
    2. 朱慧泉,付波. 一种激光红外图像的小区域目标定位方法. 电子器件. 2024(05): 1221-1226 . 百度学术
    3. 邵斌,王磊,黄瀚. 煤矿井下带式输送机智能视频远程巡检系统设计. 煤矿机械. 2023(12): 198-200 . 百度学术
    4. 杨光耀. 基于深度学习网络的井下视频图像目标检测方法研究. 中国新通信. 2021(17): 113-114 . 百度学术
    5. 龚云,杨庞彬,颉昕宇. 结合同态滤波与直方图均衡化的井下图像匹配算法. 工矿自动化. 2021(10): 37-41+61 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  73
  • HTML全文浏览量:  7
  • PDF下载量:  15
  • 被引次数: 8
出版历程
  • 刊出日期:  2019-07-19

目录

    /

    返回文章
    返回