Coal slime flotation foam image classification method based on semi-supervised clustering
-
摘要: 针对选煤厂煤泥浮选过程加药量依靠人工干预存在主观性、滞后性和粗放性的问题,提出了一种基于半监督聚类的煤泥浮选泡沫图像分类方法。首先,采集已知加药比例与未知加药比例下的煤泥浮选泡沫图像样本,并对泡沫图像进行预处理,提取泡沫的气泡个数、气泡面积、气泡周长等形态特征;然后,对已知加药比例下泡沫图像形态特征样本进行标志,对未知加药比例下泡沫图像形态特征样本不做标志,并将已标志泡沫图像形态特征样本与未标志泡沫图像形态特征样本进行混合;最后,利用基于高斯混合模型的半监督聚类方法对混合样本进行聚类后得到各类簇,将各类簇内已标志泡沫图像形态特征样本的信息映射到未标志泡沫图像形态特征样本。应用结果表明,该方法可为煤泥浮选生产过程加药量调整提供指导,降低了药剂消耗量,提高了选煤厂浮选自动化水平和经济效益。Abstract: In order to solve problems of subjectivity, hysteresis and extensiveness existed in reagent amount addition of coal slime flotation in coal preparation plant depended on manual intervention, a coal slime flotation foam image classification method based on semi-supervised clustering was proposed. Firstly, coal slime flotation foam images under known reagent-addition ratio and unknown reagent-addition ratio are collected, and the foam images are preprocessed to extract morphological characteristics such as bubble number, bubble area and bubble perimeter. Then, foam image morphological characteristic samples under known reagent-addition ratio are marked, while foam image morphological characteristic samples under unknown reagent-addition ratio are not marked, and the marked foam image morphological characteristic samples and the unmarked foam image morphological characteristic samples are mixed. Finally, semi-supervised clustering method based on Gaussian mixture model is used to cluster the mixed samples, so as to get various clusters, and information of the marked foam image morphological characteristic samples is mapped to the unmarked foam image morphological characteristic samples in various clusters. The application results show that the method can provide guidance for adjustment of reagent-addition amount in coal slime flotation production process, reduce consumption of reagent, and improve flotation automation level and economic benefit of coal preparation plant.
-
-
期刊类型引用(11)
1. 李典泽,许华杰,张勃. 基于微震信号深度特征学习的岩石破裂类型识别. 工矿自动化. 2025(03): 156-164 . 本站查看
2. 何彬,周云耀,吕永清. 结合U-net与FPN的地震初至波拾取算法. 测绘地理信息. 2024(01): 82-87 . 百度学术
3. 陈仲杰,闭水劲,董陇军,杨龙斌. 金川二矿区采场震源精细定位与时空演化规律研究. 矿业研究与开发. 2024(07): 135-141 . 百度学术
4. 宋成林,黄晓冉,邢帅,芦楠楠. 基于隐半马尔可夫模型的微震信号分割方法. 中国科技论文. 2024(08): 868-876 . 百度学术
5. 李铁牛,胡宾鑫,李化坤,耿文成,郝鹏程,纪旭波,孙增荣,朱峰,张华,阳铖权. 基于改进支持向量机的微震初至波到时自动拾取方法. 工矿自动化. 2023(03): 63-69 . 本站查看
6. 阳铖权,胡宾鑫,李化坤,耿文成,郝鹏程,纪旭波,孙增荣,朱峰,张华,李铁牛. 基于改进小波阈值去噪与分形盒维数的矿山微震初至波到时拾取研究. 矿业研究与开发. 2023(04): 125-132 . 百度学术
7. 蒋沛凡,邓飞,严星. 基于Swin Transformer特征提取的微地震初至拾取方法. 地球物理学进展. 2023(03): 1132-1142 . 百度学术
8. 胡慧江,李利平,靳昊,陈彦好,王升,黄瑞哲. 基于高阶统计量偏斜度和赤池信息准则的突涌水微振信号初至拾取方法. 工业建筑. 2023(05): 132-136+195 . 百度学术
9. 刘洋,李冒金. FPGA与北斗的高精度时差信息获取系统设计. 单片机与嵌入式系统应用. 2022(07): 59-61 . 百度学术
10. 曹杰锋,刘海鹏,周嘉琦,李坡,梁昌晶. 基于LMD-STA/LTA模型的油气管道泄漏检测方法. 世界石油工业. 2022(04): 71-76 . 百度学术
11. 邓飞,蒋沛凡,蒋先艺,帅鹏飞,唐云. 应用图像语义分割网络的微地震事件识别和初至拾取方法. 石油地球物理勘探. 2022(05): 1011-1019+999 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 102
- HTML全文浏览量: 13
- PDF下载量: 20
- 被引次数: 20