留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全光纤微震监测技术在底板突水监测中的应用研究

黄刚 韩云春 余国锋 罗勇 任波 叶赞 王立超 赵靖 徐一帆

黄刚,韩云春,余国锋,等. 全光纤微震监测技术在底板突水监测中的应用研究[J]. 工矿自动化,2024,50(6):36-45.  doi: 10.13272/j.issn.1671-251x.2024030037
引用本文: 黄刚,韩云春,余国锋,等. 全光纤微震监测技术在底板突水监测中的应用研究[J]. 工矿自动化,2024,50(6):36-45.  doi: 10.13272/j.issn.1671-251x.2024030037
HUANG Gang, HAN Yunchun, YU Guofeng, et al. Application research of all fiber optic microseismic monitoring technology in monitoring water inrush from floor[J]. Journal of Mine Automation,2024,50(6):36-45.  doi: 10.13272/j.issn.1671-251x.2024030037
Citation: HUANG Gang, HAN Yunchun, YU Guofeng, et al. Application research of all fiber optic microseismic monitoring technology in monitoring water inrush from floor[J]. Journal of Mine Automation,2024,50(6):36-45.  doi: 10.13272/j.issn.1671-251x.2024030037

全光纤微震监测技术在底板突水监测中的应用研究

doi: 10.13272/j.issn.1671-251x.2024030037
基金项目: 安徽省自然科学基金项目(2108085QE209,2008085ME145);淮南市科技计划项目(4063)。
详细信息
    作者简介:

    黄刚(1994—),男,安徽岳西人,硕士,主要从事地球物理勘探理论与应用研究工作,E-mail:gangh16@163.com

    通讯作者:

    韩云春(1985—),男,安徽定远人,高级工程师,硕士,主要从事煤矿动力灾害监测预警与防控工作,E-mail:353683026@qq.com

  • 中图分类号: TD745

Application research of all fiber optic microseismic monitoring technology in monitoring water inrush from floor

  • 摘要: 目前国内的光纤微震监测系统多是基于光学光栅传感技术,而光纤光栅波长解调限制了系统检测频率与灵敏度,且长时间、连续不间断的微震监测成功案例较少。针对上述问题,提出了一种新型全光纤微震监测系统。以潘二煤矿11023工作面回采过程中底板突水监测为工程背景,使用全光纤微震监测系统与ESG微震监测系统进行对比,得出全光纤微震监测系统具有以下优势:记录的波形频谱特征更清晰,表现出高信噪比优势;对扰动深度的监测范围更大,远距离监测效果更好;震源定位结果分布更加合理,更符合工作面实际开采情况。在监测工作面回采全周期内,分析了11023工作面断层异常区底板破坏与微震活动性关系:在断层和煤层变薄异常区附近,微震事件的数量增多、强度增大;工作面初采期间应力集中释放,受采动影响,底板破坏较深;相对大能量事件主要分布在断层异常区的底板,底板破坏深度约为27 m,微震事件在3煤底板60 m以下没有成线或成面聚集的情况,说明裂隙并未扩展,未形成导水通道,工作面安全回采。

     

  • 图  1  11023工作面

    Figure  1.  11023 working face

    图  2  新型全光纤微震监测系统组成及实物

    Figure  2.  Composition and material object of new full-fiber optic microseismic monitoring system

    图  3  11023工作面全光纤微震监测系统布置

    Figure  3.  Layout of full-fiber optic microseismic monitoring system for 11023 working face

    图  4  全光纤微震监测系统安装过程

    Figure  4.  Installation process of full-fiber optic microseismic monitoring system

    图  5  微震监测波形对比

    Figure  5.  Comparison of microseismic monitoring waveforms

    图  6  微震监测波形FFT频谱对比

    Figure  6.  Comparison of FFT spectra of microseismic monitoring waveforms

    图  7  微震监测波形S变换频谱对比

    Figure  7.  Comparison of S-transform spectra of microseismic monitoring waveforms

    图  8  底板扰动深度监测结果对比

    Figure  8.  Comparison of monitoring results of floor disturbance depth

    图  9  震源定位结果对比

    Figure  9.  Comparison of source positioning results

    图  10  11023工作面底板水害情况监测微震事件总体分布俯视图和侧视图

    Figure  10.  Top view and side view of the overall distribution of microseismic events in the monitoring of water damage on the floor of 11023 working face

    图  11  11023工作面3煤底板月微震事件数量与当月进尺平均值关系

    Figure  11.  Relationship between the number of monthly microseismic events and the average footage in 11023 working face 3 coal floor

    图  12  底板微震事件空间分布

    Figure  12.  Spatial distribution of microseismic events on the floor

    图  13  每月底板破坏深度

    Figure  13.  Monthly floor failure depth

    图  14  断层构造区微震相对大能量事件分布俯视图和侧视图

    Figure  14.  Top view and side view of microseismic relative large energy events distribution in fault structure area

    图  15  底板微震大能量事件分布

    Figure  15.  Distribution of large energy events of microseismic on the floor

    表  1  全光纤微震监测系统性能指标

    Table  1.   Performance indicators of full-fiber optic microseismic monitoring system

    性能指标 参数
    最小时间同步精度 0.1 μs
    工作环境温度 −10~60 °C
    单端机数据采集通道数 16
    动态范围 >100 dB
    采样率 32 kHz
    采样数据传输距离 ≥10 km
    电压灵敏度 40 V/g
    输出值 数字量,32 bit
    可观测频带 20 Hz~5 kHz
    最小可检测加速度 10−7 g@100 Hz
    传感器尺寸(直径×高度) 42 mm×42 mm
    下载: 导出CSV
  • [1] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭,2021,47(6):1-6.

    YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal,2021,47(6):1-6.
    [2] 袁亮,吴劲松,杨科. 煤炭安全智能精准开采关键技术与应用[J]. 采矿与安全工程学报,2023,40(5):861-868.

    YUAN Liang,WU Jinsong,YANG Ke. Key technology and its application of coal safety intelligent precision mining[J]. Journal of Mining & Safety Engineering,2023,40(5):861-868.
    [3] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331-2345.
    [4] 顾大钊,李庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11-18.

    GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11-18.
    [5] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825-1845.

    YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825-1845.
    [6] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1-15.

    ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1-15.
    [7] 许延春,黄磊. 基于微震监测的工作面底板突水全时空预警方法[J]. 煤炭科学技术,2023,51(1):369-382.

    XU Yanchun,HUANG Lei. Full-time and space early-warning method for floor water inrush in working face based on microseismic monitoring[J]. Coal Science and Technology,2023,51(1):369-382.
    [8] 肖鹏,韩凯,双海清,等. 基于微震监测的覆岩裂隙演化规律相似模拟试验研究[J]. 煤炭科学技术,2022,50(9):48-56.

    XIAO Peng,HAN Kai,SHUANG Haiqing,et al. Similar material simulation test study on evolution law of overburden fracture based on microseismic monitoring[J]. Coal Science and Technology,2022,50(9):48-56.
    [9] 武文清. 大采深奥灰水上工作面底板裂隙突水量预测[J]. 煤炭与化工,2020,43(6):58-61.

    WU Wenqing. Prediction of water inrush from floor cracks in working face on deep mining depth[J]. Coal and Chemical Industry,2020,43(6):58-61.
    [10] 杨作林. 微震信号识别与地压灾害微震前兆规律研究[D]. 赣州:江西理工大学,2015.

    YANG Zuolin. Microseismic signal recognition and the law of ground pressure disaster microseism precursor research[D]. Ganzhou:Jiangxi University of Science and Technology,2015.
    [11] 查华胜,张海江,连会青,等. 潘二煤矿A组煤层底板灰岩水害微震监测[J]. 煤炭学报,2022,47(8):3001-3014.

    ZHA Huasheng,ZHANG Haijiang,LIAN Huiqing,et al. Microseismic monitoring on limestone water inrush at coal seam floor for group A coal layer of Pan'er Coal Mine[J]. Journal of China Coal Society,2022,47(8):3001-3014.
    [12] 余国锋,袁亮,任波,等. 底板突水灾害大数据预测预警平台[J]. 煤炭学报,2021,46(11):3502-3514.

    YU Guofeng,YUAN Liang,REN Bo,et al. Big data prediction and early warning platform for floor water inrush disaster[J]. Journal of China Coal Society,2021,46(11):3502-3514.
    [13] 黄刚. 斜阶跃电流激励下圆锥型场源瞬变电磁AWPSO算法优化反演研究[D]. 南昌:东华理工大学,2021.

    HUANG Gang. Optimization of AWPSO algorithm for conical source transient electromagnetic with ramp step current excitation[D]. Nanchang:East China Institute of Technology,2021.
    [14] 朱贵旺,任波,余国锋,等. 采动诱发断层带岩体劣化微震响应特征[J]. 煤矿安全,2022,53(5):176-181.

    ZHU Guiwang,REN Bo,YU Guofeng,et al. Micro-seismic response characteristics of rock mass deterioration induced by mining in fault zone[J]. Safety in Coal Mines,2022,53(5):176-181.
    [15] 柳云龙,田有,冯晅,等. 微震技术与应用研究综述[J]. 地球物理学进展,2013,28(4):1801-1808.

    LIU Yunlong,TIAN You,FENG Xuan,et al. Review of microseism technology and its application[J]. Progress in Geophysics,2013,28(4):1801-1808.
    [16] 赵向东,陈波,姜福兴. 微地震工程应用研究[J]. 岩石力学与工程学报,2002,21(增刊2):2609-2612.

    ZHAO Xiangdong,CHEN Bo,JIANG Fuxing. Study of micro-seismic engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(S2):2609-2612.
    [17] 冀贞文,孙春江,姜福兴. 波兰煤矿冲击地压防治技术现状及分析[J]. 煤炭科学技术,2008,36(1):11-14.

    JI Zhenwen,SUN Chunjiang,JIANG Fuxing. Present status and analysis on rock burst prevention and control technology in Poland[J]. Coal Science and Technology,2008,36(1):11-14.
    [18] 艾纯明,孙振明,吴姗,等. 三维光纤光栅微震加速度传感器研究[J]. 矿业研究与开发,2014,34(6):64-67.

    AI Chunming,SUN Zhenming,WU Shan,et al. Research on 3D optical fiber and grating microseismic acceleration sensor[J]. Mining Research and Development,2014,34(6):64-67.
    [19] 聂飞,高昕,顾先明,等. 基于光纤传感器的矿井微震信号监测系统设计[J]. 煤炭工程,2015,47(4):19-21.

    NIE Fei,GAO Xin,GU Xianming,et al. Design on mine microseism monitoring system based on optical fiber sensor[J]. Coal Engineering,2015,47(4):19-21.
    [20] WANG Jinyu,JIANG Long,SUN Zengrong,et al. Research on the surface subsidence monitoring technology based on fiber bragg grating sensing[J]. Photonic Sensors,2017,7(1):20-26. doi: 10.1007/s13320-016-0331-y
    [21] LIU Tongyu,WEI Yubin,SONG Guangdong,et al. Fibre optic sensors for coal mine hazard detection[J]. Measurement,2018,124:211-223. doi: 10.1016/j.measurement.2018.03.046
    [22] 刘统玉,王纪强,孟祥军,等. 面向矿山安全物联网的光纤传感器[J]. 工矿自动化,2018,44(3):1-7.

    LIU Tongyu,WANG Jiqiang,MENG Xiangjun,et al. Optical fiber sensor for mine safety Internet of Things[J]. Industry and Mine Automation,2018,44(3):1-7.
    [23] 郭清华. 煤矿动力灾害前兆信息传感技术发展与应用[J]. 煤炭科学技术,2022,50(11):76-83.

    GUO Qinghua. Development and application of precursory information sensing technology in coal mine dynamic disaster[J]. Coal Science and Technology,2022,50(11):76-83.
    [24] ZHANG Wentao,WANG Zhaogang,HUANG Wenzhu,et al. Fiber laser sensors for micro seismic monitoring[J]. Measurement,2016,79:203-210. doi: 10.1016/j.measurement.2015.09.046
    [25] ZHANG Wentao,LI Fang,LIU Yuliang. Field test of an in-well fiber laser geophone array[C]. 22nd International Conference on Optical Fiber Sensors,Beijing,2012. DOI: 10.1117/12.968588.
    [26] ZHANG Wentao,HUANG Wenzhu,LI Fang. Earthquake monitoring using fiber laser borehole seismometer[C]. 22nd International Conference on Optical Fiber Sensors,Beijing,2012. DOI: 10.1117/12.974789.
    [27] 李世丽. 微震监测用光纤加速度传感器研究[D]. 合肥:安徽大学,2020.

    LI Shili. Research on fiber optic acceleration sensors for microseismic monitoring[D]. Hefei:Anhui University,2020.
    [28] 王传朋. 基于井上下微震联合监测技术的震源高度误差控制研究[J]. 煤炭工程,2023,55(12):28-33.

    WANG Chuanpeng. Improvement of the error of hypocenter height based on surface-underground microseismic monitoring technology[J]. Coal Engineering,2023,55(12):28-33.
    [29] 李楠,王恩元,孙珍玉,等. 基于L1范数统计的单纯形微震震源定位方法[J]. 煤炭学报,2014,39(12):2431-2438.

    LI Nan,WANG Enyuan,SUN Zhenyu,et al. Simplex microseismic source location method based on L1 norm statistical standard[J]. Journal of China Coal Society,2014,39(12):2431-2438.
    [30] 李楠. 微震震源定位的关键因素作用机制及可靠性研究[D]. 徐州:中国矿业大学,2014.

    LI Nan. Research on mechanisms of key factors and reliability for microseismic source location[D]. Xuzhou:China University of Mining and Technology,2014.
    [31] 平健,李仕雄,陈虹燕,等. 微震定位原理与实现[J]. 金属矿山,2010(1):167-169.

    PING Jian,LI Shixiong,CHEN Hongyan,et al. Principle and realization of microseism location[J]. Metal Mine,2010(1):167-169.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-06-15
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回