留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面液压支架状态感知与分析技术研究

李建 任怀伟 巩师鑫

李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7, 103.  doi: 10.13272/j.issn.1671-251x.2023040075
引用本文: 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究[J]. 工矿自动化,2023,49(10):1-7, 103.  doi: 10.13272/j.issn.1671-251x.2023040075
LI Jian, REN Huaiwei, GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7, 103.  doi: 10.13272/j.issn.1671-251x.2023040075
Citation: LI Jian, REN Huaiwei, GONG Shixin. Research on state perception and analysis technology of hydraulic support in fully mechanized working face[J]. Journal of Mine Automation,2023,49(10):1-7, 103.  doi: 10.13272/j.issn.1671-251x.2023040075

综采工作面液压支架状态感知与分析技术研究

doi: 10.13272/j.issn.1671-251x.2023040075
基金项目: 工信部项目(202216705);中国华能总部科技项目(HNKJ20-H48)。
详细信息
    作者简介:

    李建(1997—),男,山西吕梁人,硕士研究生,主要研究方向为采场液压支架与支护技术,E-mail:lijian12323@163.com

  • 中图分类号: TD355

Research on state perception and analysis technology of hydraulic support in fully mechanized working face

  • 摘要: 综采工作面智能化是煤矿智能化的关键环节,液压支架状态感知与分析是综采工作面智能化的前提和智能控制的基础。液压支架压力和位姿是液压支架能够直接监测的关键状态数据,二者进行融合分析是液压支架智能控制和智能执行的依据。以液压支架压力和位姿为研究对象,介绍了智能化综采工作面状态感知架构。从液压支架受力和上覆岩层矿压2个角度总结了液压支架压力感知与分析技术现状,指出目前基于大数据的矿压分析尚未应用、工作面矿压与巷道压力数据未实现同步测量、未实现整个采场的全面数据分析、对超前液压支架的关注度不够。阐述了液压支架位姿感知原理和方法,总结了现有液压支架位姿分析方法。分析了液压支架压力−位姿融合分析的必要性,总结了现有的液压支架压力−位姿融合分析方法。展望了综采工作面液压支架状态感知与分析技术的发展趋势,即深入研究大数据技术、多维数据融合感知与分析技术、数字孪生技术在液压支架状态感知与分析中的应用,以实现液压支架状态数据精细化分析、智能控制与决策。

     

  • 图  1  液压支架状态感知传感器安装位置

    Figure  1.  Installation positions of state sensors for hydraulic support

    图  2  智能化综采工作面液压支架感知架构

    Figure  2.  Intelligent perception framework of hydraulic support in fully mechanized working face

    图  3  工作面液压支架压力的有线+无线组网监测系统

    Figure  3.  Wired+wireless networking monitoring system of hydraulic support pressure in working face

    图  4  液压支架群组位姿监测系统

    Figure  4.  Posture monitoring system of hydraulic support groups

    图  5  液压支架摄像头安装位置

    Figure  5.  Installation position of hydraulic support camera

  • [1] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [2] 廉自生,袁祥,高飞,等. 液压支架网络化智能感控方法[J]. 煤炭学报,2020,45(6):2078-2089.

    LIAN Zisheng,YUAN Xiang,GAO Fei,et al. Networked intelligent sensing method for powered support[J]. Journal of China Coal Society,2020,45(6):2078-2089.
    [3] 庞义辉. 液压支架支护状态感知与数据处理技术[J]. 工矿自动化,2021,47(11):66-73.

    PANG Yihui. Support state perception and data processing technology of hydraulic support[J]. Industry and Mine Automation,2021,47(11):66-73.
    [4] 孙学波. 急倾斜煤层工作面液压支架压力监测系统设计[J]. 煤矿开采,2016,21(5):106-110.

    SUN Xuebo. Pressure monitoring system design of hydraulic support in steeply inclined coal seam working face[J]. Coal Mining Technology,2016,21(5):106-110.
    [5] 陈亮,孟国营,牛一村,等. 基于CAN总线及无线传感技术的液压支架压力监测系统[J]. 煤炭工程,2010(6):111-113.

    CHEN Liang,MENG Guoying,NIU Yicun,et al. Hydraulic support pressure monitoring system based on CAN bus and wireless sensor technology[J]. Coal Engineering,2010(6):111-113.
    [6] 李起伟. 基于LoRa通信的无线液压支架压力传感器设计[J]. 工矿自动化,2020,46(12):111-115.

    LI Qiwei. Design of wireless pressure sensor of hydraulic support based on LoRa technology[J]. Industry and Mine Automation,2020,46(12):111-115.
    [7] 韩哲,杜毅博,任怀伟,等. 基于LoRaWAN的液压支架状态监测系统[J]. 工矿自动化,2020,46(8):89-93,100.

    HAN Zhe,DU Yibo,REN Huaiwei,et al. Hydraulic support condition monitoring system based on LoRaWAN[J]. Industry and Mine Automation,2020,46(8):89-93,100.
    [8] 胡亮. 无线低功耗液压支架压力监测系统设计[J]. 工矿自动化,2017,43(6):83-86.

    HU Liang. Design of wireless pressure monitoring system of hydraulic support with low power consumption[J]. Industry and Mine Automation,2017,43(6):83-86.
    [9] 王桃,刘晓文,乔欣,等. 基于无线传感器网络的液压支架压力监测系统设计[J]. 工矿自动化,2014,40(6):7-10.

    WANG Tao,LIU Xiaowen,QIAO Xin,et al. Design of pressure monitoring system of hydraulic support based on wireless sensor network[J]. Industry and Mine Automation,2014,40(6):7-10.
    [10] 丁恩杰,孟祥,李晓,等. 基于无线传感器网络的井下液压支架压力监测系统设计[J]. 煤矿机械,2010,31(10):139-141.

    DING Enjie,MENG Xiang,LI Xiao,et al. Design of coal mine hydraulic support pressure monitoring system based on wireless sensor networks[J]. Coal Mine Machinery,2010,31(10):139-141.
    [11] 王国法,庞义辉,李明忠,等. 超大采高工作面液压支架与围岩耦合作用关系[J]. 煤炭学报,2017,42(2):518-526.

    WANG Guofa,PANG Yihui,LI Mingzhong,et al. Hydraulic support and coal wall coupling relationship in ultra large height mining face[J]. Journal of China Coal Society,2017,42(2):518-526.
    [12] 庞矿安,刘俊峰,董德彪. 大倾角放顶煤液压支架稳定性动态分析[J]. 煤矿开采,2005,10(6):1-2,12.

    PANG Kuang'an,LIU Junfeng,DONG Debiao. Dynamic analysis of caving powered support stability in deeply inclined coal seam[J]. Coal Mining Technology,2005,10(6):1-2,12.
    [13] 杨科,池小楼,刘帅. 大倾角煤层综采工作面液压支架失稳机理与控制[J]. 煤炭学报,2018,43(7):1821-1828.

    YANG Ke,CHI Xiaolou,LIU Shuai. Instability mechanism and control of hydraulic support in fully mechanized longwall mining with large dip[J]. Journal of China Coal Society,2018,43(7):1821-1828.
    [14] 徐亚军,王国法,刘业献. 两柱掩护式液压支架承载特性及其适应性研究[J]. 煤炭学报,2016,41(8):2113-2120.

    XU Yajun,WANG Guofa,LIU Yexian. Supporting property and adaptability of 2-leg powered support[J]. Journal of China Coal Society,2016,41(8):2113-2120.
    [15] 张华磊,涂敏,张继兵,等. 大采高综采破碎顶板液压支架压架致损机理分析[J]. 山东科技大学学报(自然科学版),2013,32(6):1-6,12.

    ZHANG Hualei,TU Min,ZHANG Jibing,et al. Analysis on the damage mechanism of hydraulic powered supports crushing at the broken roof of fully mechanized mining face with great cutting height[J]. Journal of Shandong University of Science and Technology(Natural Science),2013,32(6):1-6,12.
    [16] 周凯,李明瑞,焦素娟. 基于耦合动力学模型的围岩−支架相互作用分析[J]. 煤炭学报,2015,40(11):2534-2539.

    ZHOU Kai,LI Mingrui,JIAO Sujuan. Analysis of interaction between hydraulic support and its surrounding rock based on dynamics coupling model[J]. Journal of China Coal Society,2015,40(11):2534-2539.
    [17] 刘新华,王国法,刘成峰,等. 两柱大采高液压支架的整架有限元分析[J]. 煤炭科学技术,2010,38(8):93-96.

    LIU Xinhua,WANG Guofa,LIU Chengfeng,et al. Full set finite element analysis on two-leg high cutting hydraulic powered support[J]. Coal Science and Technology,2010,38(8):93-96.
    [18] 曾庆良,杨春祥,刘鹏,等. 不同顶板压力作用下特大采高液压支架受力分析[J]. 煤炭技术,2018,37(4):187-189.

    ZENG Qingliang,YANG Chunxiang,LIU Peng,et al. Stress analysis of hydraulic powered support for ultra high mining under different roof pressure[J]. Coal Technology,2018,37(4):187-189.
    [19] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [20] 张通,赵毅鑫,朱广沛,等. 神东浅埋工作面矿压显现规律的多因素耦合分析[J]. 煤炭学报,2016,41(增刊2):287-296.

    ZHANG Tong,ZHAO Yixin,ZHU Guangpei,et al. A multi-coupling analysis of mining-induced pressure characteristics of shallow-depth coal face in Shendong mining area[J]. Journal of China Coal Society,2016,41(S2):287-296.
    [21] 巩师鑫,任怀伟,杜毅博,等. 基于MRDA−FLPEM集成算法的综采工作面矿压迁移预测[J]. 煤炭学报,2021,46(增刊1):529-538.

    GONG Shixin,REN Huaiwei,DU Yibo,et al. Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm[J]. Journal of China Coal Society,2021,46(S1):529-538.
    [22] JIA Tong,YUAN Xi,GAO Tinghanqi,et al. Depth perception based on monochromatic shape encode-decode structured light method[J]. Optics and Lasers in Engineering,2020,134. DOI: 10.1016/j.optlaseng.2020.106259.
    [23] USENKO V,ENGEL J,STÜCKLER J,et al. Direct visual-inertial orometry with stereo cameras[C]. IEEE International Conference on Robotics and Automation,Stockholm,2016:1885-1892.
    [24] 黄鹤松,王飞,田成金,等. 基于倾角传感器的矿用液压支架测高系统设计[J]. 煤炭科学技术,2018,46(3):124-129,193.

    HUANG Hesong,WANG Fei,TIAN Chengjin,et al. Design on height measuring system of mine hydraulic powered support based on inclination sensor[J]. Coal Science and Technology,2018,46(3):124-129,193.
    [25] 张坤,廉自生,谢嘉成,等. 基于多传感器数据融合的液压支架高度测量方法[J]. 工矿自动化,2017,43(9):65-69.

    ZHANG Kun,LIAN Zisheng,XIE Jiacheng,et al. Height measurement method of hydraulic support based on multi-sensor data fusion[J]. Industry and Mine Automation,2017,43(9):65-69.
    [26] 陈冬方,李首滨. 基于液压支架倾角的采煤高度测量方法[J]. 煤炭学报,2016,41(3):788-793.

    CHEN Dongfang,LI Shoubin. Measurement of coal mining height based on hydraulic support structural angle[J]. Journal of China Coal Society,2016,41(3):788-793.
    [27] 文治国,侯刚,王彪谋,等. 两柱掩护式液压支架姿态监测技术研究[J]. 煤矿开采,2015,20(4):49-51.

    WEN Zhiguo,HOU Gang,WANG Biaomou,et al. Attitude monitoring technology of two-prop shield powered support[J]. Coal Mining Technology,2015,20(4):49-51.
    [28] 王亚飞,王学文,谢嘉成,等. 基于灰色理论的液压支架记忆姿态监测方法[J]. 工矿自动化,2017,43(8):11-14.

    WANG Yafei,WANG Xuewen,XIE Jiacheng,et al. Memory attitude monitoring method for hydraulic support based on grey theory[J]. Industry and Mine Automation,2017,43(8):11-14.
    [29] 任怀伟,李帅帅,赵国瑞,等. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究[J]. 采矿与安全工程学报,2022,39(1):72-81,93.

    REN Huaiwei,LI Shuaishuai,ZHAO Guorui,et al. Measurement method of support height and roof beam posture angles for working face hydraulic support based on depth vision[J]. Journal of Mining & Safety Engineering,2022,39(1):72-81,93.
    [30] 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法[J]. 工矿自动化,2019,45(3):56-60.

    ZHANG Xuhui,WANG Dongman,YANG Wenjuan,et al. Position detection method of hydraulic support based on vision measurement[J]. Industry and Mine Automation,2019,45(3):56-60.
    [31] 侯刚. 矿用液压支架支护质量综合监测保障系统设计与实现[J]. 煤矿开采,2016,21(5):24-28.

    HOU Gang. Integrated monitoring safeguard system design and implementation of mine hydraulic support supporting quality[J]. Coal Mining Technology,2016,21(5):24-28.
    [32] 欧阳敏,杨斐文. 基于FreeRTOS和Modbus的新型液压支架姿态监测系统设计[J]. 煤炭技术,2022,41(9):185-188.

    OUYANG Min,YANG Feiwen. Design of new hydraulic support attitude monitoring system based on FreeRTOS and Modbus[J]. Coal Technology,2022,41(9):185-188.
    [33] 王渊,李红卫,郭卫,等. 基于图像识别的液压支架护帮板收回状态监测方法[J]. 工矿自动化,2019,45(2):47-53.

    WANG Yuan,LI Hongwei,GUO Wei,et al. Monitoring method of recovery state of hydraulic support guard plate based on image recognition[J]. Industry and Mine Automation,2019,45(2):47-53.
    [34] 周凯,任怀伟,华宏星,等. 基于油缸压力的液压支架姿态及受载反演[J]. 煤矿开采,2017,22(5):36-40.

    ZHOU Kai,REN Huaiwei,HUA Hongxing,et al. Loading inversion and hydraulic support pose based on cylinder pressure[J]. Coal Mining Technology,2017,22(5):36-40.
    [35] 梁利闯,田嘉劲,郑辉,等. 冲击载荷作用下液压支架的力传递分析[J]. 煤炭学报,2015,40(11):2522-2527.

    LIANG Lichuang,TIAN Jiajin,ZHENG Hui,et al. A study on force transmission in a hydraulic support under impact loading on its canopy beam[J]. Journal of China Coal Society,2015,40(11):2522-2527.
    [36] 万丽荣,刘鹏,孟昭胜,等. 特大采高液压支架稳定性分析研究[J]. 煤炭科学技术,2017,45(1):148-153.

    WAN Lirong,LIU Peng,MENG Zhaosheng,et al. Study and analysis on stability of hydraulic powered support for ultra high mining[J]. Coal Science and Technology,2017,45(1):148-153.
    [37] 解盘石,伍永平,张浩,等. 大倾角煤层长壁大采高综采支架动态载荷特征分析[J]. 煤炭科学技术,2016,44(4):101-105.

    XIE Panshi,WU Yongping,ZHANG Hao,et al. Changeful load feature analysis of supports in longwall and large mining height fully-mechanized face of steeply dipping seam[J]. Coal Science and Technology,2016,44(4):101-105.
    [38] 张东升,吴鑫,张炜,等. 大倾角工作面特殊开采时期支架稳定性分析[J]. 采矿与安全工程学报,2013,30(3):331-336.

    ZHANG Dongsheng,WU Xin,ZHANG Wei,et al. Stability analysis on support in large inclined coalface during special mining period[J]. Journal of Mining & Safety Engineering,2013,30(3):331-336.
    [39] 孟浩. 大采高工作面顶板结构分析与支架工作阻力确定[J]. 煤矿安全,2021,52(10):177-182,189.

    MENG Hao. Analysis of roof structure and determination of support working resistance in large mining height workface[J]. Safety in Coal Mines,2021,52(10):177-182,189.
    [40] 王纯,丁照龙. 基于ANSYS的偏载条件下液压支架仿真研究[J]. 内燃机与配件,2021(10):82-83.

    WANG Chun,DING Zhaolong. Simulation study of hydraulic support under eccentric load conditions based on ANSYS[J]. Internal Combustion Engine & Parts,2021(10):82-83.
    [41] 张莉. 基于急倾斜煤层开采的液压支架受力计算及仿真研究[J]. 煤炭技术,2022,41(2):200-202.

    ZHANG Li. Stress calculate and simulation research of hydraulic support based on steeply inclined coal seam mining[J]. Coal Technology,2022,41(2):200-202.
    [42] 庞义辉,王国法. 大采高液压支架结构优化设计及适应性分析[J]. 煤炭学报,2017,42(10):2518-2527.

    PANG Yihui,WANG Guofa. Hydraulic support with large mining height structural optimal design and adaptability analysis[J]. Journal of China Coal Society,2017,42(10):2518-2527.
    [43] 张金虎,王国法,侯刚,等. 布尔台煤矿厚煤层大采高液压支架适应性分析[J]. 煤炭科学技术,2014,42(9):95-98,103. doi: 10.13199/j.cnki.cst.2014.09.0021

    ZHANG Jinhu,WANG Guofa,HOU Gang,et al. Adaptability analysis on high cutting hydraulic powered support applied to thick seam in Buertai Mine[J]. Coal Science and Technology,2014,42(9):95-98,103. doi: 10.13199/j.cnki.cst.2014.09.0021
  • 加载中
图(5)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  91
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-10-10
  • 网络出版日期:  2023-10-25

目录

    /

    返回文章
    返回