留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灾后救援生命探测仪的现状和发展趋势

郑学召 杨卓瑞 郭军 蔡国斌 王宝元 寇智哲 肖永福 张小军

郑学召,杨卓瑞,郭军,等. 灾后救援生命探测仪的现状和发展趋势[J]. 工矿自动化,2023,49(6):104-111.  doi: 10.13272/j.issn.1671-251x.18125
引用本文: 郑学召,杨卓瑞,郭军,等. 灾后救援生命探测仪的现状和发展趋势[J]. 工矿自动化,2023,49(6):104-111.  doi: 10.13272/j.issn.1671-251x.18125
ZHENG Xuezhao, YANG Zhuorui, GUO Jun, et al. The current status and development trend of post-disaster rescue life detectors[J]. Journal of Mine Automation,2023,49(6):104-111.  doi: 10.13272/j.issn.1671-251x.18125
Citation: ZHENG Xuezhao, YANG Zhuorui, GUO Jun, et al. The current status and development trend of post-disaster rescue life detectors[J]. Journal of Mine Automation,2023,49(6):104-111.  doi: 10.13272/j.issn.1671-251x.18125

灾后救援生命探测仪的现状和发展趋势

doi: 10.13272/j.issn.1671-251x.18125
基金项目: 国家自然科学基金资助项目(52174197);陕西省哲学社会科学重大理论与现实问题年度研究项目(2021HZ1130);陕西省重点研发计划项目(2023-YBSF-101)。
详细信息
    作者简介:

    郑学召(1977—),男,新疆焉耆人,教授,博士,研究方向为应急技术与管理、矿山防灭火技术, E-mail:zhengxuezhao@xust.edu

  • 中图分类号: TD77

The current status and development trend of post-disaster rescue life detectors

  • 摘要: 生命探测仪作为灾后及时救援的一种设备,在定位、探索与搜寻生命体方面发挥着不可替代的作用。分析了目前所使用的生命探测仪即雷达生命探测仪、音频生命探测仪、红外生命探测仪及其他种类生命探测仪的工作原理、技术特点、使用场景及优缺点,并结合实际应用指出上述生命探测仪存在的问题:① 探测技术单一,综合集成化不高。② 探测方式传统、设备智能化程度不足。③ 探测仪零件未统型,设备维修困难。④ 部分生命探测仪体积较大,携带不便,影响救援效率。针对现有的不足和问题,提出生命探测仪的发展趋势:① 提高生命探测仪的集成程度,设计使用采集信息的多源化融合的生命探测装置,使用多种信息源来进行生命信息的获取探测。② 提高生命探测仪的智能化水平,赋予生命探测仪部分自主决策权,降低由于操作人员操作不当导致的生命探测误差。③ 设计模块化的生命探测仪,并制定相关的标准规程,对同种生命探测仪的零件进行统型,降低生命探测仪的维修和保养难度。④ 提高生命探测仪的电路板设计精度,充分利用空间构造,在不缩减生命探测仪功能情况下减小体积,提高便携性。

     

  • 图  1  雷达生命探测仪工作原理

    Figure  1.  Working principle of the radar life detector

    图  2  音频生命探测仪工作原理

    Figure  2.  Working principle of the audio life detector

    图  3  红外生命探测仪工作原理

    Figure  3.  Working principle of the infrared life detector

    图  4  多源信息生命探测仪的融合工作原理

    Figure  4.  The fusion working principle of multiple information life detector

    表  1  不同种类的生命探测仪的特点对比

    Table  1.   Characteristics comparison of different types of life detectors

    生命探测仪工作原理主动/被动式有/无发射
    信号源
    影响因素适用场景
    雷达生命探测仪 电磁波的反射回波分析 主动式 金属物质及介电常
    数较大的其他物质
    被困人员、被困场景金属及高介电常数物质少
    音频生命探测仪 声波振动波的接收探测 被动式 外界环境的振动影响 外界环境相对安静,无大型器械、车辆等干扰因素
    红外生命探测仪 人体辐射热量和环境的差异 被动式 温度 环境温度不高,被困人员被困时间短
    静电场生命探测仪 静电场相吸相斥原理 被动式 救援场所无较强磁场干扰 救援场景较狭窄,仪器不便进入,且救援场所没有较强磁场
    气敏生命探测仪 狭小空间内CO2浓度变化 被动式 环境中CO2浓度 环境密封且无空气流动
    下载: 导出CSV
  • [1] 刘传正,王建新. 自然灾害的基本型式及防控对策研究[J]. 岩石力学与工程学报,2023,42(2):275-291.

    LIU Chuanzheng,WANG Jianxin. Basic patterns of natural disasters and some countermeasures for risk mitigation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):275-291.
    [2] NARAYANAN R G L,IBE O C. A joint network for disaster recovery and search and rescue operations[J]. Computer Networks,2012,56(14):3347-3373. doi: 10.1016/j.comnet.2012.05.012
    [3] 李娟,李睿,苟扬. 专利文献计量视阈下的灾害救援技术发展态势[J]. 中国发明与专利,2022,19(10):5-11.

    LI Juan,LI Rui,GOU Yang. Development trend of disaster rescue technology from the perspective of patent bibliometrics[J]. China Invention & Patent,2022,19(10):5-11.
    [4] 盛亦男,杨旭宇. 自然灾害冲击、政府赈灾重建与农村劳动力流动[J]. 人口研究,2021,45(6):29-44.

    SHENG Yinan,YANG Xuyu. The influence of natural disaster shocks on rural labor migration and government's reaction in China[J]. Population Research,2021,45(6):29-44.
    [5] 杨根云. 地震滑坡易发性评价及震后潜在泥石流沟判别[D]成都: 成都理工大学, 2018.

    YANG Genyun. Assessment of co-seismic landslide susceptibility and post-earthquake debris flow-prone catchments identification[D]. Chengdu: Chengdu University of Technology, 2018.
    [6] 乔建平,王萌,吴彩燕,等. 汶川地震扰动区小流域滑坡泥石流风险评估——以都江堰白沙河流域为例[J]. 中国地质灾害与防治学报,2018,29(4):1-9.

    QIAO Jianping,WANG Meng,WU Caiyan,et al. Landslide and debris flow risk assessment for small water sheels in the Wenchuan earthquake disturbance area:taking the Baishahe River Basin in Dujiangyan as an example[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):1-9.
    [7] 高娜. 地震应急救援优先级探讨[J]. 国际地震动态,2019(1):13-17.

    GAO Na. Discussion on the priority of earthquake emergency rescue[J]. Recent Developments in World Seismology,2019(1):13-17.
    [8] 王宇. 公路交通应急抢险救援装备要平战结合[J]. 交通世界(建养. 机械),2013(5):8.

    WANG Yu. Highway traffic emergency rescue equipment should be combined with peacetime and wartime[J]. Transpo World,2013(5):8.
    [9] 赵英宝,黄丽敏. 智能便携式CO2生命探测仪的设计[J]. 传感器与微系统,2012,31(2):106-108.

    ZHAO Yingbao,HUANG Limin. Design of an intelligent portable CO2 life detector[J]. Transducer and Microsystem Technologies,2012,31(2):106-108.
    [10] 金添,宋勇平. 穿墙雷达人体目标探测技术综述[J]. 电波科学学报,2020,35(4):486-495.

    JIN Tian,SONG Yongping. Review on human target detection using through-wall radar[J]. Chinese Journal of Radio Science,2020,35(4):486-495.
    [11] 朱延春. 浅析生命探测技术现状及应用[J]. 科技创新导报,2012(20):33.

    ZHU Yanchun. The current situation and application of life exploration technology[J]. Science and Technology Innovation Herald,2012(20):33.
    [12] 张磊,浦小海. 雷达生命探测仪用生命体征模拟系统研制[J]. 消防科学与技术,2023,42(1):94-97.

    ZHANG Lei,PU Xiaohai. Development of vital sign simulation system for radar life detector[J]. Fire Science and Technology,2023,42(1):94-97.
    [13] CHAN K H,LIN J C. Microprocessor-based cardiopulmonary rate monitor[J]. Medical & Biological Engineering & Computing,1987,25(1):41-44.
    [14] CHEN Kunmu,HUANG Yong,ZHANG Jianping,et al. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Bio-medical Engineering,2000,47(1):105-114. doi: 10.1109/10.817625
    [15] 王宁. 基于FMCW雷达的多人定位及生命体征探测技术研究[D]. 南京: 南京理工大学, 2021.

    WANG Ning. Research on multi person localization and vital sign detection technology based on FMCW radar [D]. Nanjing: Nanjing University of Science and Technology, 2021.
    [16] 晏治. 雷达生命探测仪在消防救援中的应用探究[J]. 消防界(电子版),2022,8(4):52-54.

    YAN Zhi. Research on the application of radar life detector in fire rescue[J]. Fire Industry (Electronic Version),2022,8(4):52-54.
    [17] 李震,杨昀. 雷达生命探测仪在消防救援中的应用[J]. 消防界(电子版),2020,6(18):56-57.

    LI Zhen,YANG Yun. Application of radar life detector in fire rescue[J]. Fire Industry (Electronic Version),2020,6(18):56-57.
    [18] 刘海盆. 主动电磁波生命信号实时检测处理技术研究[D]. 长沙: 国防科学技术大学, 2010.

    LIU Haipen. The technology of real-time detecting and processing active electromagnetic life signal[D]. Changsha: National University of Defense Science Technology, 2010.
    [19] 薛春荣,刘鹏程,宋文. 矿用雷达式生命探测仪的设计[J]. 煤矿机械,2015,36(4):56-59.

    XUE Chunrong,LIU Pengcheng,SONG Wen. Design of radar life detecting for coal mine[J]. Coal Mine Machinery,2015,36(4):56-59.
    [20] 郑学召,孙梓峪,郭军,等. 矿山钻孔救援多源信息探测技术研究与应用[J]. 煤田地质与勘探,2022,50(11):94-102. doi: 10.12363/issn.1001-1986.22.05.0421

    ZHENG Xuezhao,SUN Ziyu,GUO Jun,et al. Research and application of multi-source information detection technology for drilling rescue of mine[J]. Coal Geology & Exploration,2022,50(11):94-102. doi: 10.12363/issn.1001-1986.22.05.0421
    [21] 李钰梁. 矿井超宽带雷达生命探测系统的研究[D]. 阜新: 辽宁工程技术大学, 2022.

    LI Yuliang. Research on mine ultra-wideband radar life detection system[D]. Fuxin: Liaoning Technical University, 2022.
    [22] YUE Qizhu. A qualitative interpretation on the mechanism of the technique of electromagnetic radiation sounding[J]. Progress in Geophysics,2006,21(4):1281-1284.
    [23] 孙佳阳. 超低频电磁波无线收发装置的设计及其定位方法的研究[D]. 沈阳: 东北大学, 2019.

    SUN Jiayang. The design of wireless transceiver based on the electromagnetic wave of ultra-low frequency and the research on its location algorithm[D]. Shenyang: Northeastern University, 2019.
    [24] 唐伟浩. 基于负压波与超低频电磁波的管道泄漏检测定位方法研究[D]. 西安: 西安理工大学, 2018.

    TANG Weihao. Research on pipeline leak detection and location method based on negative pressure wave and ultra low frequency electromagnetic wave[D]. Xi'an: Xi'an University of Technology, 2018.
    [25] 潘波,王俊松,陈志刚,等. 基于超低频电磁波定位的出油管道检测技术[J]. 管道技术与设备,2015(2):33-35.

    PAN Bo,WANG Junsong,CHEN Zhigang,et al. Detection technique of flow lines based on localization using extremely low frequency electromagnetic wave[J]. Pipeline Technique and Equipment,2015(2):33-35.
    [26] 王毅,曹群生,袁肖. 地震期间的超低频电磁波传播异常研究[J]. 南京航空航天大学学报,2013,45(4):479-484.

    WANG Yi,CAO Qunsheng,YUAN Xiao. Electromagnetic propagation anomalies during earthquakes[J]. Journal of Nanjing University of Aeronautics & Astronautics,2013,45(4):479-484.
    [27] 吴江星,张晓强,于洪池. 吉林省中等地震前超低频电磁波异常分析[J]. 防灾减灾学报,2010,26(3):48-54.

    WU Jiangxing,ZHANG Xiaoqiang,YU Hongchi. Analysls of elf electromacgnetic waves' anomalies before moderate earthquakes in Jilin province[J]. Journal of Disaster Prevention and Reduction,2010,26(3):48-54.
    [28] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.

    ZHANG Diping. Research on location method of underground electromagnetic positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [29] 王楠,秦其明,陈理,等. 天然源超低频电磁探测技术在煤储层识别中的应用[J]. 煤炭学报,2014,39(1):141-146. doi: 10.13225/j.cnki.jccs.2013.0153

    WANG Nan,QIN Qiming,CHEN Li,et al. Natural source super-low frequency electromagnetic prospecting in the application of coal-bed methane reservoir identification[J]. Journal of China Coal Society,2014,39(1):141-146. doi: 10.13225/j.cnki.jccs.2013.0153
    [30] 蒋洪波,陈超,秦其明. 天然源超低频频谱的曲波分解与分析[J]. 光谱学与光谱分析,2012,32(2):472-475. doi: 10.3964/j.issn.1000-0593(2012)02-0472-04

    JIANG Hongbo,CHEN Chao,QIN Qiming. Decomposition and analysis of the natural source SLF spectrum using curvelet transform method[J]. Spectroscopy and Spectral Analysis,2012,32(2):472-475. doi: 10.3964/j.issn.1000-0593(2012)02-0472-04
    [31] 白彦锋,李斌,杜英霞. 基于调制电磁脉冲场的主动电磁探测研究[J]. 国外电子测量技术,2012,31(2):39-42. doi: 10.3969/j.issn.1002-8978.2012.02.011

    BAI Yanfeng,LI Bin,DU Yingxia. Study of active EM detection based on EM modulated pulse field[J]. Foreign Electronic Measurement Technology,2012,31(2):39-42. doi: 10.3969/j.issn.1002-8978.2012.02.011
    [32] XU Yanyun,WU Shiyou,CHEN Chao,et al. A novel method for automatic detection of trapped victims by ultrawideband radar[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(8):3132-3142.
    [33] 景裕,曹育森,朱明明,等. 非接触式生命探测技术研究现状与发展[J]. 中国医疗设备,2021,36(6):1-4.

    JING Yu,CAO Yusen,ZHU Mingming,et al. Research status and development of non-contact life detection technology[J]. China Medical Devices,2021,36(6):1-4.
    [34] 马骁. 面向灾后救援的人体生命体征探测研究[D]. 成都: 电子科技大学, 2016.

    MA Xiao. Research on the detection of human vital signs after disaste[D]: Chengdu: University of Electronic Science and Technology of China, 2016.
    [35] 梁执桓,金婉妍. 基于新型谱减算法的音频微振生命探测仪系统设计[J]. 电子制作,2018(增刊2):16-18.

    LIANG Zhihuan,JIN Wanyan. Design of audio microvibration life detector system based on the new spectral subtraction algorithm[J]. Practical Electronics,2018(S2):16-18.
    [36] MURPHY D F,RAY M,WYLES R,et al. High-sensitivity 25-μm microbolometer FPAs[J]. International Society for Optics and Photonics,2003,4820:208-219.
    [37] 尹世敏,张海兵,南赛,等. 基于近红外光谱技术的人体低频振荡信号研究[J]. 燕山大学学报,2018,42(5):416-421.

    YIN Shimin,ZHANG Haibing,NAN Sai,et al. Study on low frequency oscillation signal of human body based on near infrared spectroscopy[J]. Journal of Yanshan University,2018,42(5):416-421.
    [38] LI Wenshi,LI Huiqi,LU S,et al. Lie detection experiment methodology:infrared image and spectum analysis[J]. Key Engineering Materials,2008,381/382:365-368. doi: 10.4028/www.scientific.net/KEM.381-382.365
    [39] 孙黎明. 基于红外成像的生命探测仪设计与研究[D]. 秦皇岛: 燕山大学, 2012.

    SUN Liming. Design and research of life detection based on infrared imaging[D]. Qinhuangdao: Yanshan University, 2012.
    [40] KIM S H,LIM S C,KIM D Y. Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and action recognition[J]. Annals of Nuclear Energy,2018,112:845-855.
    [41] 郑学召,李诚康,文虎,等. 矿井灾害救援生命信息探测技术及装备综述[J]. 煤矿安全,2017,48(12):116-119. doi: 10.13347/j.cnki.mkaq.2017.12.031

    ZHENG Xuezhao,LI Chengkang,WEN Hu,et al. Summary of mine disaster rescue life information detection technology and equipment[J]. Safety in Coal Mines,2017,48(12):116-119. doi: 10.13347/j.cnki.mkaq.2017.12.031
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  32
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-02
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-06-20

目录

    /

    返回文章
    返回