留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿智能化开采光纤传感关键技术体系

方新秋 冯豪天 梁敏富 陈宁宁 吴刚 宋扬

方新秋,冯豪天,梁敏富,等. 煤矿智能化开采光纤传感关键技术体系[J]. 工矿自动化,2023,49(6):78-87.  doi: 10.13272/j.issn.1671-251x.18107
引用本文: 方新秋,冯豪天,梁敏富,等. 煤矿智能化开采光纤传感关键技术体系[J]. 工矿自动化,2023,49(6):78-87.  doi: 10.13272/j.issn.1671-251x.18107
FANG Xinqiu, FENG Haotian, LIANG Minfu, et al. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation,2023,49(6):78-87.  doi: 10.13272/j.issn.1671-251x.18107
Citation: FANG Xinqiu, FENG Haotian, LIANG Minfu, et al. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation,2023,49(6):78-87.  doi: 10.13272/j.issn.1671-251x.18107

煤矿智能化开采光纤传感关键技术体系

doi: 10.13272/j.issn.1671-251x.18107
基金项目: 国家自然科学基金资助项目(51874276,52004273,52104167);江苏省自然科学基金青年基金资助项目(BK20200639);中央高校基本科研业务费专项资金资助项目(2020ZDPY0209);中国矿业大学研究生创新计划项目(2023WLKXJ016)。
详细信息
    作者简介:

    方新秋(1974—),男,浙江永康人,教授,博士,博士研究生导师,研究方向为煤矿智能化开采,E-mail: xinqiufang@163.com

    通讯作者:

    陈宁宁(1993—),男,安徽淮北人,博士研究生,研究方向为煤矿智能化开采,E-mail: ningnc93@163.com

  • 中图分类号: TD67

Key technology system of fiber optic sensing for intelligent coal mining

  • 摘要: 智能感知是煤矿智能化开采的首要环节,为智能决策与智能控制提供数据支持。光纤传感技术因精度高、抗干扰能力和环境耐受能力强、组网复用方式灵活多样等优势,为煤矿开采智能感知提供了解决方案。在研究光纤传感技术原理基础上,构建了光纤光栅−基材感知信息传递模型,提出了表面粘贴式、刻槽填埋式、表面粘贴基片式光纤光栅封装技术,并进行光谱重构与温度补偿研究,以保障高精度数据感知;开发了高精度光纤光栅钻孔应力传感器、锚杆应力传感器、锚杆测力传感器、顶板离层传感器、温度传感器等开采环境智能感知传感器,光纤光栅支架倾角传感器、支架压力传感器、曲率传感器等采煤工作面装备姿态感知传感器,以及光纤光栅传感器标定工作台,为智能化采煤工作面建设提供了基于光纤传感技术的智能感知设备;整合多种光纤光栅传感器,构建了煤矿开采环境与工作面装备姿态多参量光纤光栅智能感知体系,解决了煤矿开采过程感知数据多源异构容量大、感知设备不易复用、组网难等问题;开发了煤矿开采环境安全预警与装备姿态决策系统软件,形成集“光纤光栅智能感知−动态响应−前兆预警−安全决策”于一体的煤矿开采安全决策体系;分析指出研发多场景适用的特殊材质光纤产品、适应煤矿开采需求的封装技术、兼顾精度与成本的解调仪硬件,将有助于推动光纤传感技术在煤矿智能化开采信息感知方面的应用。

     

  • 图  1  光纤光栅封装技术

    Figure  1.  Fiber grating packaging technologies

    图  2  动态应变条件下光纤光栅光谱重构效果

    Figure  2.  Spectrum reconstruction effects of fiber grating under dynamic strain conditions

    图  3  煤矿开采环境感知传感器

    Figure  3.  Coal mining environment sensing sensors

    图  4  采煤工作面装备姿态感知传感器

    Figure  4.  Equipment posture sensing sensors in coal mining face

    图  5  光纤光栅传感器标定装置

    Figure  5.  Calibration device for fiber grating sensors

    图  6  煤矿开采多参量光纤光栅智能感知体系

    Figure  6.  Intelligent multi-parameter sensing system based on fiber grating for coal mining

    图  7  煤矿开采环境光纤光栅智能感知系统

    Figure  7.  Intelligent coal mining environment sensing system based on fiber grating

    图  8  液压支架光纤光栅智能感知系统

    Figure  8.  Intelligent hydraulic support sensing system based on fiber grating

    图  9  刮板输送机直线度光纤光栅智能感知系统

    Figure  9.  Intelligent straightness sensing system of scraper conveyor based on fiber grating

    图  10  采煤机姿态误差补偿模型

    Figure  10.  Error compensation model of shearer posture

    图  11  煤矿开采准分布式光纤光栅智能感知系统架构

    Figure  11.  Structure of quasi-distributed intelligent sensing system based on fiber grating for coal mining

  • [1] 国家发展改革委, 国家能源局, 应急管理部, 等. 关于印发《关于加快煤矿智能化发展的指导意见》的通知[EB/OL]. (2020-03-02)[2023-04-09]. https:/www.ndrc.gov.cn/xxgk/zcfb/tz/202007/t20200710_1233536.html?code=&state=123.htm.

    National Development and Reform Commission, National Energy Administration, Emergency Department, et al. Notice on printing and distributing The guiding opinions on accelerating the development of intelligent coal mines[EB/OL]. (2020-03-02)[2023-04-09]. http://www.gov.cn/zhengce/zhengceku/2020-03/05/content_5487081.htm.
    [2] 王国法,徐亚军,孟祥军,等. 智能化采煤工作面分类、分级评价指标体系[J]. 煤炭学报,2020,45(9):3033-3044.

    WANG Guofa,XU Yajun,MENG Xiangjun,et al. Specification,classification and grading evaluation index for smart longwall mining face[J]. Journal of China Coal Society,2020,45(9):3033-3044.
    [3] 施斌,朱鸿鹄,张丹,等. 从岩土体原位检测、探测、监测到感知[J]. 工程地质学报,2022,30(6):1811-1818.

    SHI Bin,ZHU Honghu,ZHANG Dan,et al. From in-situ rock-and-soil testing,exploration,monitoring to sensing[J]. Journal of Engineering Geology,2022,30(6):1811-1818.
    [4] CHEN Ningning, FANG Xinqiu, LIANG Minfu, et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and AdaBoost algorithm[J]. Sustainability, 2023, 15(3). DOI: 10.3390/su15032239.
    [5] KLAR A, NISSIM O, ELKAYAM I. A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023. DOI: 10.1016/j.jrmge.2022.12.027.
    [6] 柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.

    CHAI Jing,LIU Hongrui,ZHANG Dingding,et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.
    [7] 李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20.

    LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20.
    [8] 朱鸿鹄,王佳,李厚芝,等. 基于数据挖掘的三峡库区特大滑坡变形关联规则研究[J]. 工程地质学报,2022,30(5):1517-1527.

    ZHU Honghu,WANG Jia,LI Houzhi,et al. Association rule analysis for giant landslide deformation of the three gorges reservoir region based on data mining[J]. Journal of Engineering Geology,2022,30(5):1517-1527.
    [9] 李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术, 2022: 1-9 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.

    LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology, 2022: 1-9 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.
    [10] 刘统玉,王兆伟,李振,等. 激光/光纤传感技术研究及其在煤矿安全监测预警中的应用[J]. 激光与光电子学进展,2021,58(13):233-243.

    LIU Tongyu,WANG Zhaowei,LI Zhen,et al. Advance of laser and fiber optic sensors for applications of coal mine safety monitoring and early warning[J]. Laser & Optoelectronics Progress,2021,58(13):233-243.
    [11] SONG Yang, FANG Xinqiu, WU Gang, et al. Research on straightness perception compensation model of FBG scraper conveyor based on rotation error angle[J]. Sensors (Basel), 2022, 22(17). DOI: 10.3390/s22176399.
    [12] 张平松,张丹,孙斌杨,等. 巷道断面空间岩层变形与破坏演化特征光纤监测研究[J]. 工程地质学报,2019,27(2):260-266.

    ZHANG Pingsong,ZHANG Dan,SUN Binyang,et al. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and stratum deformation and failure in space of mining field[J]. Journal of Engineering Geology,2019,27(2):260-266.
    [13] 侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6.

    HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.
    [14] FANG Xinqiu, ZHANG Fan, SHI Zongshen, et al. Research and application of multi-mode joint monitoring system for shaft wall deformation [J]. Sensors (Basel), 2022, 22(17). DOI: 10.3390/s22176551.
    [15] 王德堂,李海伟,王公华,等. 用于矿井提升机钢丝绳张力测量的光纤光栅传感器设计[J]. 工矿自动化,2018,44(2):106-110.

    WANG Detang,LI Haiwei,WANG Gonghua,et al. Design of fiber grating sensor for steel wire rope tension measurement of mine hoist[J]. Industry and Mine Automation,2018,44(2):106-110.
    [16] LIANG Minfu,FANG Xinqiu,WU Gang,et al. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure[J]. Optik,2017,145:503-512. doi: 10.1016/j.ijleo.2017.08.014
    [17] 苑立波,童维军,江山,等. 我国光纤传感技术发展路线图[J]. 光学学报,2022,42(1):9-42.

    YUAN Libo,TONG Weijun,JIANG Shan,et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica,2022,42(1):9-42.
    [18] 方新秋,何杰,张斌,等. 无人工作面采煤机自主定位系统[J]. 西安科技大学学报,2008(2):349-353.

    FANG Xinqiu,HE Jie,ZHANG Bin,et al. Self-positioning system of the shearer in unmanned workface[J]. Journal of Xi'an University of Science and Technology,2008(2):349-353.
    [19] 方新秋,何杰,郭敏江,等. 煤矿无人工作面开采技术研究[J]. 科技导报,2008(9):56-61.

    FANG Xinqiu,HE Jie,GUO Minjiang,et al. Study on unmanned workface mining technology[J]. Science & Technology Review,2008(9):56-61.
    [20] 梁敏富,方新秋,薛广哲,等. 光纤光栅测力锚杆的标定试验[J]. 煤矿安全,2015,46(1):44-46.

    LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Calibration test of force-measuring bolt based on fiber grating[J]. Safety in Coal Mines,2015,46(1):44-46.
    [21] 梁敏富. 煤矿开采多参量光纤光栅智能感知理论及关键技术[D]. 徐州: 中国矿业大学, 2019.

    LIANG Minfu. Intelligent sensing theory and key technologies of multi-parameter fiber Bragg grating in coal mining[D]. Xuzhou: China University of Mining and Technology, 2019.
    [22] 权志桥,方新秋,薛广哲,等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光,2020,47(1):163-172.

    QUAN Zhiqiao,FANG Xinqiu,XUE Guangzhe,et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor[J]. Chinese Journal of Lasers,2020,47(1):163-172.
    [23] LIANG Minfu,CHEN Ningning,FANG Xinqiu,et al. Strain transferring mechanism analysis of the surface-bonded FBG sensor[J]. Applied Optics,2018,57(20):5837-5843. doi: 10.1364/AO.57.005837
    [24] 梁敏富,方新秋,陈宁宁,等. 表贴式光纤光栅锚杆应变感知机理与应用研究[J]. 中国矿业大学学报,2018,47(6):1243-1251.

    LIANG Minfu,FANG Xinqiu,CHEN Ningning,et al. Strain sensing mechanism of surface bonded fiber Bragg grating bolt and its application[J]. Journal of China University of Mining & Technology,2018,47(6):1243-1251.
    [25] 薛广哲. 巷道锚固岩体的光纤光栅智能感知机制及应用研究[D]. 徐州: 中国矿业大学, 2019.

    XUE Guangzhe. Research on mechanism and application of intelligent sensing of roadway anchored rock mass based on FBG[D]. Xuzhou: China University of Mining and Technology, 2019.
    [26] 梁敏富,方新秋,薛广哲,等. FBG锚杆测力计研制及现场试验[J]. 采矿与安全工程学报,2017,34(3):549-555.

    LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Development of anchor dynamometer of FBG and its field test[J]. Journal of Mining & Safety Engineering,2017,34(3):549-555.
    [27] LIANG Minfu,FANG Xinqiu,NING Yaosheng. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors,2018,8(2):157-167. doi: 10.1007/s13320-018-0417-9
    [28] 梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826-2833.

    LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826-2833.
    [29] 方新秋,梁敏富,李爽,等. 智能工作面多参量精准感知与安全决策关键技术[J]. 煤炭学报,2020,45(1):493-508.

    FANG Xinqiu,LIANG Minfu,LI Shuang,et al. Key technologies of multi-parameter accurate perception and security decision in intelligent working face[J]. Journal of China Coal Society,2020,45(1):493-508.
    [30] LIANG Minfu, SONG Yang, FANG Xinqiu, et al. Structural design and application of desensitized FBG force-measuring bolt[J]. Sensors (Basel), 2022, 22(10). DOI: 10.3390/s22103930.
    [31] LIANG Minfu, FANG Xinqiu, CHEN Ningning, et al. A sensing mechanism and the application of a surface-bonded FBG dynamometry bolt[J]. Applied Sciences, 2022, 12(7). DOI: 10.3390/app12073225.
    [32] LIANG Minfu, FANG Xinqiu. Application of fiber Bragg grating sensing technology for bolt force status monitoring in roadways[J]. Applied Sciences, 2018, 8(1). DOI: 10.3390/app8010107.
    [33] 李虎威,方新秋,梁敏富. 基于光纤光栅传感技术的顶板离层监测系统[J]. 煤矿安全,2016,47(4):143-145.

    LI Huwei,FANG Xinqiu,LIANG Minfu. Roof separation monitoring system based on fiber grating sensor technology[J]. Safety in Coal Mines,2016,47(4):143-145.
    [34] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [35] LIANG Minfu,FANG Xinqiu,LI Shuang,et al. A fiber Bragg grating tilt sensor for posture monitoring of hydraulic supports in coal mine working face[J]. Measurement,2019,138:305-313. doi: 10.1016/j.measurement.2019.02.060
    [36] 方新秋,梁敏富,邢晓鹏,等. 光纤光栅支架压力表的研制及性能测试[J]. 采矿与安全工程学报,2018,35(5):945-952.

    FANG Xinqiu,LIANG Minfu,XING Xiaopeng,et al. Development of hydraulic support pressure gauge based on FBG and its performance test[J]. Journal of Mining & Safety Engineering,2018,35(5):945-952.
    [37] 方新秋,宁耀圣,李爽,等. 基于光纤光栅的刮板输送机直线度感知关键技术研究[J]. 煤炭科学技术,2019,47(1):152-158.

    FANG Xinqiu,NING Yaosheng,LI Shuang,et al. Research on key technique of straightness perception of scraper conveyor based on fiber grating[J]. Coal Science and Technology,2019,47(1):152-158.
    [38] 方新秋,冯豪天,梁敏富,等. 煤矿开采光纤光栅智能感知与安全决策关键技术研究[J]. 中国煤炭,2022,48(11):46-56.

    FANG Xinqiu,FENG Haotian,LIANG Minfu,et al. Research on key technologies of fiber Bragg grating intelligent sensing and safety decision in coal mining[J]. China Coal,2022,48(11):46-56.
    [39] 胡秀坤. 基于光纤光栅传感器的巷道矿压在线监测系统构建及应用[D]. 徐州: 中国矿业大学, 2017.

    HU Xiukun. Construction and application of on-line roadway mine pressure monitoring system based on fiber bragg grating sensors[D]. Xuzhou: China University of Mining and Technology, 2017.
    [40] 吴刚. 基于捷联惯导的采煤机运行姿态高精度感知理论与技术研究[D]. 徐州: 中国矿业大学, 2020.

    WU Gang. Research on high precision sensing theory operating attitude and technology of shearer based on SINS[D]. Xuzhou: China University of Mining and Technology, 2020.
    [41] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [42] WU Gang, FANG Xinqiu, SONG Yang, et al. Study on the shearer attitude sensing error compensation method based on strapdown inertial navigation system[J]. Applied Sciences, 2022, 12(21). DOI: 10.3390/app122110848.
    [43] WU Gang, FANG Xinqiu, ZHANG Lei, et al. Positioning accuracy of the shearer based on a strapdown inertial navigation system in underground coal mining[J]. Applied Sciences, 2020, 10(6). DOI: 10.3390/app10062176.
    [44] 杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
  • 加载中
图(11)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  27
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-15
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-06-30

目录

    /

    返回文章
    返回