留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钻孔救援的UWB雷达波传输衰减研究及展望

文虎 刘盛铠 郑学召 蔡国斌 黄渊 张会

文虎,刘盛铠,郑学召,等. 基于钻孔救援的UWB雷达波传输衰减研究及展望[J]. 工矿自动化,2023,49(4):42-49.  doi: 10.13272/j.issn.1671-251x.18053
引用本文: 文虎,刘盛铠,郑学召,等. 基于钻孔救援的UWB雷达波传输衰减研究及展望[J]. 工矿自动化,2023,49(4):42-49.  doi: 10.13272/j.issn.1671-251x.18053
WEN Hu, LIU Shengkai, ZHENG Xuezhao, et al. Research and prospect of UWB radar wave transmission attenuation based on borehole rescue[J]. Journal of Mine Automation,2023,49(4):42-49.  doi: 10.13272/j.issn.1671-251x.18053
Citation: WEN Hu, LIU Shengkai, ZHENG Xuezhao, et al. Research and prospect of UWB radar wave transmission attenuation based on borehole rescue[J]. Journal of Mine Automation,2023,49(4):42-49.  doi: 10.13272/j.issn.1671-251x.18053

基于钻孔救援的UWB雷达波传输衰减研究及展望

doi: 10.13272/j.issn.1671-251x.18053
基金项目: 国家自然科学基金项目(52174197);陕西省重点研发计划项目(2023-YBSF-101)。
详细信息
    作者简介:

    文虎(1972—),男,新疆石河子人,教授,博士,博士研究生导师,研究方向为煤自燃预测预报、矿井火灾防治理论与技术及井下应急救援,E-mail:wenh@xust.edu.cn

  • 中图分类号: TD77

Research and prospect of UWB radar wave transmission attenuation based on borehole rescue

  • 摘要: 快速精准地获取井下受灾人员位置是钻孔救援前期生命信息探测的关键问题。针对在垂直钻孔救援过程中,由于探测区域巷道坍塌或终孔位置偏移,无法快速准确地获取被困人员位置,耽误救援的黄金时间,影响人员生命安全的问题,通过开展UWB雷达波传输衰减研究,为现场救援指挥人员快速制定救援方案。分析了UWB雷达波应用于矿山钻孔救援的现状和需求,并结合矿山钻孔救援背景,指出UWB雷达波传输衰减规律,从介质的各向同异性分析了介质的特性参数对雷达波传输衰减的影响;从介电常数、电导率、磁导率和时空变化4个方面分析了介质的电性参数对雷达波传输衰减的影响;从雷达频率和极化2个方面分析了雷达特征参数对雷达波传输衰减的影响。根据上述分析,指出目前对UWB雷达波同时穿透煤岩体等各向异性介质的研究和介质传播衰减机理研究较少;在井下复杂多变或模拟受灾后环境的UWB雷达波传输衰减理论与实验较少,相关规律总结较少;UWB雷达波关键参数与影响因素之间的映射关系数据库尚未完善。并给出未来需研究的关键技术:① 对煤岩体等各向异性介质在宏观与微观上进行研究;② 搭建灾变环境条件下雷达波传输衰减实验模拟系统;③ 增加灾变后非结构环境下UWB雷达信号传播特性的研究与信道建模数值模拟。

     

  • 图  1  矿山钻孔救援UWB雷达波井下探测场景

    Figure  1.  Mine borehold rescue UWB radar wave underground detection scene

    图  2  电磁波传播

    Figure  2.  Electromagnetic wave propagation

    图  3  雷达波频率

    Figure  3.  Radar wave frequency

    图  4  电磁波极化方式

    Figure  4.  Electromagnetic wave polarization mode

  • [1] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557-1566. doi: 10.13225/j.cnki.jccs.dy20.0272

    YUAN Liang. Research progress on risk identification,assessment,monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557-1566. doi: 10.13225/j.cnki.jccs.dy20.0272
    [2] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1-7. doi: 10.13225/j.cnki.jccs.2016.1661

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1-7. doi: 10.13225/j.cnki.jccs.2016.1661
    [3] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29-33. doi: 10.13199/j.cnki.cst.2019.05.004

    TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29-33. doi: 10.13199/j.cnki.cst.2019.05.004
    [4] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5-9. doi: 10.3969/j.issn.1673-193X.2011.01.001

    WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5-9. doi: 10.3969/j.issn.1673-193X.2011.01.001
    [5] ZHENG Xuezhao,WANG Hu,GUO Jun,et al. Method for multi-information drilling detection after mining disasters[J]. Computers and Electrical Engineering,2020,86(6):1-14.
    [6] TALOR J D. Ultra-wideband radar technology[J]. Microwaves & RF,2001,40(2):164-165.
    [7] SAKOTIC Z,CRNOJEVIC-BENGIN V,JANKOVIC N. Compact circular-patch-based bandpass filter for ultra-wideband wireless communication systems[J]. AEUE - International Journal of Electronics and Communications,2017,82:272-278. doi: 10.1016/j.aeue.2017.09.002
    [8] 梁步阁. UWB雷达目标探测理论与实验研究[D]. 长沙: 国防科学技术大学, 2007.

    LIANG Buge. Theory and test of target detection for ultra-wideband radar[D]. Changsha: National University of Defense Technology, 2007.
    [9] 郑学召,孙梓峪,张嬿妮,等. 面向钻孔救援的超宽带雷达技术研究现状与方向[J]. 工矿自动化,2021,47(8):20-26. doi: 10.13272/j.issn.1671-251x.17800

    ZHENG Xuezhao,SUN Ziyu,ZHANG Yanni,et al. Research status and direction of ultra-wide band radar technology for borehole rescue[J]. Industry and Mine Automation,2021,47(8):20-26. doi: 10.13272/j.issn.1671-251x.17800
    [10] 马宏伟,马琨,田海波. 矿山钻孔救援探测机器人研究进展[J]. 工矿自动化,2019,45(2):24-29.

    MA Hongwei,MA Kun,TIAN Haibo. Research progress of mine drilling rescue detection robots[J]. Industry and Mine Automation,2019,45(2):24-29.
    [11] LI Jing,LIU Lanbo,ZENG Zhaofa,et al. Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped in complex environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(3):783-791. doi: 10.1109/JSTARS.2013.2259801
    [12] 刘怀远. 基于UWB雷达传感器的SAR成像应用研究[D]. 成都: 电子科技大学, 2017.

    LIU Huaiyuan. Application research of SAR imaging based on a UWB radar sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2017
    [13] 王宝元. 矿井生命信息探测超宽带雷达波衰减规律研究[D]. 西安: 西安科技大学, 2020.

    WANG Baoyuan. Research on the attenuation law of ultra-wideband radar wave for mine life information detection[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [14] 王中林,邵佳佳. 面向工程电磁学的动生麦克斯韦方程组及其求解方法[J]. 中国科学:技术科学,2022,52(9):1416-1433.

    WANG Zhonglin,SHAO Jiajia. Maxwell's equations for a mechano-driven varying-speed-motion media system for engineering electrodynamics and their solutions[J]. Scientia Sinica(Technologica),2022,52(9):1416-1433.
    [15] 李蕙君,钟若飞. 探地雷达波振幅与土壤含水量关系的数值模拟[J]. 应用科学学报,2015,33(1):41-49.

    LI Huijun,ZHONG Ruofei. Numerical study on the relationship between amplitudes of ground penetrating radar wave and water content in soil[J]. Journal of Applied Sciences,2015,33(1):41-49.
    [16] CHEN Hongdong,JIANG Bo,CHEN Tongjun,et al. Experimental study on ultrasonic velocity and anisotropy of tectonically deformed coal[J]. International Journal of Coal Geology,2017,179:242-252. doi: 10.1016/j.coal.2017.06.003
    [17] 王弘刚,张存波,张建德. 实心砖墙对电磁波的衰减特性[J]. 强激光与粒子束,2013,25(9):2373-2377. doi: 10.3788/HPLPB20132509.2373

    WANG Honggang,ZHANG Cunbo,ZHANG Jiande. Attenuation characteristics of electromagnetic wave penetrating brick wall[J]. High Power Laser and Particle Beams,2013,25(9):2373-2377. doi: 10.3788/HPLPB20132509.2373
    [18] 金添,宋永坤,戴永鹏,等. UWB−HA4D−1.0:超宽带雷达人体动作四维成像数据集[J]. 雷达学报,2022,11(1):27-39.

    JIN Tian,SONG Yongkun,DAI Yongpeng,et al. UWB-HA4D-1.0:an ultra-wideband radar human activity 4D imaging dataset[J]. Journal of Radars,2022,11(1):27-39.
    [19] 胡志鹏. 超宽带MIMO雷达系统设计与穿墙成像方法研究[D]. 长春: 吉林大学, 2020.

    HU Zhipeng. Design of UWB MIMO radar system and research on the method of through-wall imaging[D]. Changchun: Jilin University, 2020.
    [20] GOSPODCHIKOV E D,KHUSAINOV T A,SHALASHOV A G. Attenuation of Bragg backscattering of electromagnetic waves from density fluctuations near the region of polarization degeneracy in magnetoactive plasma[J]. Plasma Physics Reports,2016,42(8):723-733. doi: 10.1134/S1063780X16080031
    [21] HROVAT A,KANDUS G,JAVORNIK T. A survey of radio propagation modeling for tunnels[J]. Communications Surveys & Tutorials,2014,16(2):658-669.
    [22] 贾成艳,常天英,樊伟,等. 太赫兹波穿透煤层的衰减特性[J]. 煤炭学报,2015,40(增刊1):298-302. doi: 10.13225/j.cnki.jccs.2015.0432

    JIA Chengyan,CHANG Tianying,FAN Wei,et al. Attenuation characteristics of terahertz wave penetrating coals[J]. Journal of China Coal Society,2015,40(S1):298-302. doi: 10.13225/j.cnki.jccs.2015.0432
    [23] 郑学召,孙梓峪,王宝元,等. 超宽带雷达波在煤体中的传输衰减特性[J]. 西安科技大学学报,2021,41(5):765-771. doi: 10.13800/j.cnki.xakjdxxb.2021.0501

    ZHENG Xuezhao,SUN Ziyu,WANG Baoyuan,et al. Transmission attenuation characteristics of ultra-wideband radar waves in coal[J]. Journal of Xi'an University of Science and Technology,2021,41(5):765-771. doi: 10.13800/j.cnki.xakjdxxb.2021.0501
    [24] MEDEL L,MARTIN R A,URRUTIA L F. Electromagnetic shielding induced by topological surface states[J]. The European Physical Journal Plus,2023,138(1):1-18. doi: 10.1140/epjp/s13360-022-03580-z
    [25] 季银涛. 基于深度学习的探地雷达图像介电常数反演研究[D]. 济南: 山东大学, 2021.

    JI Yintao. Deep learning based ground penetrating radar image permittivity inversion research[D]. Jinan: Shandong University, 2021.
    [26] 张守祥,刘帅. 脉冲雷达透地探测煤岩实验研究[J]. 煤炭学报,2019,44(1):340-348. doi: 10.13225/j.cnki.jccs.2018.0768

    ZHANG Shouxiang,LIU Shuai. Experiments on ground-penetrating detecting coal-rock interface with radio pulse radar[J]. Journal of China Coal Society,2019,44(1):340-348. doi: 10.13225/j.cnki.jccs.2018.0768
    [27] 杨茗惠. 微波测量介电常数方法研究及应用[D]. 沈阳: 沈阳工业大学, 2018.

    YANG Minghui. Study of microwave dielectric measurement method and its application[D]. Shenyang: Shenyang University of Technology, 2018.
    [28] 张军. 矿井孔−巷无线电磁波透视探测方法[J]. 煤炭学报,2020,45(8):2856-2864.

    ZHANG Jun. Research on radio electromagnetic wave perspective detection method through borehole-roadway in mine[J]. Journal of China Coal Society,2020,45(8):2856-2864.
    [29] 王震. 基于雷达极化的电力接地网状态检测方法研究[D]. 北京: 华北电力大学(北京), 2018.

    WANG Zhen. Research on the state detection method of power grounding grid based on radar polarization[D]. Beijing: North China Electric Power University, 2018.
    [30] 朱成成. 钻孔雷达电磁波传播及异常地质体探测[D]. 长春: 吉林大学, 2018.

    ZHU Chengcheng. Propagation of borehole radar's electromagnetic wave and detection to abnormal geo-bodies[D]. Changchun: Jilin University, 2018.
    [31] LIU Guole,ZHANG Guomin,YU Hui,et al. Experimental and numerical study of frequency-dependent transport loss in YBa2Cu3O7–δ coated conductors with ferromagnetic substrate and copper stabilizer[J]. Journal of Applied Physics,2017,121(24):243902. doi: 10.1063/1.4989807
    [32] CHARLES E B, ERIC J B, RICHARD J K, et al. Microwave absorber employing acicular magnetic metallic filaments: EP90300632.8[P]. 1990-08-01.
    [33] 吴昱. 基于探地雷达的钢筋下部空洞检测及成像规律研究[D]. 石家庄: 石家庄铁道大学, 2018.

    WU Yu. The research on detection and image regualation of cavity under the reinforcement based on GPR[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018.
    [34] PADHY S, SANYA S,MEENA S R,et al. Development and characterisation of (Mg,Mn) U-type microwave absorbing materials and its application in radar cross sections reduction[J]. IET Microwaves,Antennas & Propagation,2014,8(3):165-170.
    [35] 史宗麟. 面向列存储模式的时空对象查询处理技术研究[D]. 长沙: 国防科学技术大学, 2014.

    SHI Zonglin. A research of spatio-temporal object query processing technology oriented to column storage model[D]. Changsha: National University of Defense Technology, 2014.
    [36] LIANG Fulai, LOU Hao, ZHANG Yang, et al. Through-the-wall high-dimensional imaging of human vital signs by combining multiple enhancement algorithms using portable LFMCW-MIMO radar[J]. Measurement, 2022, 195. DOI: 10.1016/J.MEASUREMENT.2022.111074.
    [37] 朱尉强,黄清华. 探地雷达衰减补偿逆时偏移成像方法[J]. 地球物理学报,2016,59(10):3909-3916.

    ZHU Weiqiang,HUANG Qinghua. Attenuation compensated reverse time migration method of ground penetrating radar signals[J]. Chinese Journal of Geophysics,2016,59(10):3909-3916.
    [38] 崔凡,吴志远,武彦斌. 探地雷达在西部煤矿砂壤地层含水率时空变化中的应用[J]. 煤炭学报,2015,40(10):2437-2444. doi: 10.13225/j.cnki.jccs.2015.0688

    CUI Fan,WU Zhiyuan,WU Yanbin. Application of GPR in the spatio-temporal variation of moisture content of sandy loam layer in western China[J]. Journal of China Coal Society,2015,40(10):2437-2444. doi: 10.13225/j.cnki.jccs.2015.0688
    [39] 鲁勇. 认知无线电中基于欠采样的宽带频谱感知关键技术研究[D]. 长沙: 国防科学技术大学, 2014.

    LU Yong. Research on sub-nyquist wideband spectrum sensing technologies in cognitive raido networks[D]. Changsha: National University of Defense Technology, 2014.
    [40] 徐华伟. 岸−船雷达系统的数据处理与传输技术研究[J]. 舰船科学技术,2018,40(16):88-90.

    XU Huawei. Research on data processing and transmission technology of shore-ship radar system[J]. Ship Science and Technology,2018,40(16):88-90.
    [41] RISSAFI Y,TALBI L,GHADDAR M. Experimental characterization of an UWB propagation channel in underground mines[J]. IEEE Transactions on Antennas and Propagat,2012,60(1):240-246. doi: 10.1109/TAP.2011.2167927
    [42] 陈清礼,肖希,蒋晓斌,等. 电磁波衰减系数特性分析[J]. 石油天然气学报,2014,36(8):43-45,51. doi: 10.3969/j.issn.1000-9752.2014.08.009

    CHEN Qingli,XIAO Xi,JIANG Xiaobin,et al. The attenuation characteristics of electromagnetic wave[J]. Journal of Oil and Gas Technology,2014,36(8):43-45,51. doi: 10.3969/j.issn.1000-9752.2014.08.009
    [43] 薛少华,谭建平,邓积微,等. 矿井井筒中电磁波传播特性研究与无线通信试验[J]. 煤炭学报,2018,43(8):2361-2366. doi: 10.13225/j.cnki.jccs.2017.1302

    XUE Shaohua,TAN Jianping,DENG Jiwei,et al. Radio channel characterization study and wireless communication trial in mine shaft[J]. Journal of China Coal Society,2018,43(8):2361-2366. doi: 10.13225/j.cnki.jccs.2017.1302
    [44] 文虎,张铎,郑学召,等. 基于FDTD的电磁波在煤中传播特性[J]. 煤炭学报,2017,42(11):2959-2967.

    WEN Hu,ZHANG Duo,ZHENG Xuezhao,et al. Propagation characteristics of electromagnetic wave based on FDTD in coal[J]. Journal of China Coal Society,2017,42(11):2959-2967.
    [45] 包涵. 超宽带变极化无芯片RFID标签的研究[D]. 广州: 华南理工大学, 2018.

    BAO Han. Research on ultra-wideband depolarizing chipless RFID tag[D]. Guangzhou: South China University of Technology, 2018.
    [46] 梁昌洪,陈曦. 电磁波极化及其应用[J]. 电气电子教学学报,2011,33(3):1-5.

    LIANG Changhong,CHEN Xi. Polarization and application of electromagnetic wave[J]. Journal of Electrical & Electronic Education,2011,33(3):1-5.
    [47] 赵新程, 姜彦南, 古蔚琪, 等. 基于遗传算法的线−圆极化转换超表面优化设计[C]. 第十七届全国电波传播年会, 延安, 2022: 414-417.

    ZHAO Xincheng, JIANG Yannan, GU Weiqi, et al. Optimization design of linear-circular polarization conversion metasurface based on genetic algorithm[C]. The 17th National Radio Wave Communication Annual Conference, Yan'an, 2022: 414-417.
    [48] BASHIR S. Effect of antenna position and polarization on UWB propagation channel in underground mines and tunnels[J]. IEEE Transactions on Antennas and Propagation,2014,62(9):4771-4779. doi: 10.1109/TAP.2014.2334352
  • 加载中
图(4)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  42
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-03-22
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回