Laser-based material flow detection method for belt conveyors using Akima interpolation
-
摘要:
针对现有基于激光雷达的带式输送机物料流量检测方法易受异常点云数据影响、难以准确描述物料表面状态的问题,提出一种基于Akima插值的带式输送机物料流量激光检测方法。通过激光雷达获取输送带点云轨迹,并进行直通滤波和离群点去噪处理;采用Akima插值法获取带式输送机上物料的截面积,结合输送带运行速度和激光雷达扫描频率,计算单个扫描周期内的物料体积;通过对任意时间段的测量数据进行积分,获得该时间段内的物料总体积。仿真结果表明,对激光雷达输出的点云进行离群点去噪处理,能够有效识别异常的点云数据并对其进行修正,修正后的计算结果更接近真实的物料截面积。分别采用扇形−三角形计算法和Akima插值法对不同体积和带速的情况进行对比实验,结果表明,扇形−三角形计算法的精度较低且不稳定,而Akima插值法的精度全部达90%以上,可靠性高,可以准确得到输送物料的瞬时流量和总流量。
Abstract:To address the issue that existing LiDAR-based material flow detection methods for belt conveyors are susceptible to abnormal point cloud data and struggle to accurately describe the surface state of materials, a laser-based material flow detection method for belt conveyors using Akima interpolation is proposed. The method involved acquiring point cloud trajectories of the conveyor belt using LiDAR, followed by pass-through filtering and outlier noise removal. The Akima interpolation method was then used to obtain the cross-sectional area of material on the belt. Combined with the conveyor's operating speed and LiDAR scanning frequency, the material volume within a single scan cycle was calculated. By integrating the measurement data over any given time period, the total material volume during that period could be obtained. Simulation results showed that denoising outlier points from the LiDAR output point cloud could effectively identify and correct abnormal data, resulting in calculated values that were closer to the actual material cross-sectional area. Comparative experiments using both the sector-triangle calculation method and the Akima interpolation method under varying volumes and belt speeds demonstrated that the sector-triangle method had lower and less stable accuracy, while the Akima interpolation method consistently achieved accuracy above 90%, offering high reliability and enabling accurate measurement of both instantaneous and total material flow.
-
Keywords:
- belt conveyor /
- flow detection /
- LiDAR /
- Akima interpolation method /
- outlier denoising
-
-
表 1 扇形−三角形计算法实验数据
Table 1 Experimental data of sector-triangle calculation method
实际体积/dm3 带速/(m·min−1) 实验1 实验2 实验3 实验4 实验5 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 1.8 5 2.011 88.26 1.731 96.18 1.591 88.41 1.689 93.83 1.756 97.61 10 1.945 91.97 1.924 93.11 2.053 85.96 1.923 93.17 1.806 99.67 15 1.812 99.34 1.801 99.92 2.002 88.78 1.884 95.32 1.869 96.17 20 2.202 77.63 2.048 86.23 2.081 84.38 2.043 86.52 2.096 83.54 2.4 5 2.737 85.96 2.592 92.0 2.581 92.44 2.446 98.08 2.577 92.61 10 2.776 84.35 2.589 92.13 2.664 89.00 2.859 80.87 2.741 85.79 15 2.799 83.37 2.888 79.68 2.697 87.61 2.883 79.89 2.639 90.05 20 2.667 88.87 2.785 83.97 2.708 87.16 2.710 87.07 2.810 82.92 3.0 5 3.165 94.49 3.175 94.18 3.269 91.04 3.391 86.98 3.233 92.22 10 3.212 92.94 3.151 94.97 3.275 90.83 3.318 89.41 3.420 86.01 15 3.300 89.98 3.352 88.28 3.381 87.28 3.474 84.18 3.352 88.28 20 3.230 92.34 3.402 86.59 3.470 84.34 3.175 94.16 3.501 83.31 表 2 Akima插值法实验数据
Table 2 Experimental data of Akima interpolation method
实际体积/dm3 带速/(m·min−1) 实验1 实验2 实验3 实验4 实验5 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 检测值/dm3 精度/% 1.8 5 1.770 98.36 1.739 96.63 1.671 92.81 1.687 93.72 1.867 96.29 10 1.894 94.78 1.819 98.94 1.853 97.04 1.621 90.03 1.745 96.97 15 1.734 96.36 1.954 91.44 1.695 94.17 1.795 99.74 1.733 96.27 20 1.728 96.01 1.583 87.93 1.622 90.11 1.740 96.67 1.757 97.61 2.4 5 2.637 90.13 2.407 99.71 2.547 93.86 2.206 91.91 2.335 97.29 10 2.197 91.55 2.332 97.18 2.433 98.61 2.383 99.31 2.563 93.2 15 2.399 99.94 2.581 92.45 2.523 94.87 2.616 91.02 2.326 96.93 20 2.209 92.06 2.302 95.90 2.241 93.37 2.546 93.92 2.624 90.67 3.0 5 3.002 99.94 2.965 98.85 3.071 97.63 3.264 91.22 3.101 96.65 10 2.986 99.52 2.875 95.85 3.050 98.34 3.055 98.18 3.076 97.46 15 2.951 98.35 2.874 95.81 3.029 99.04 3.171 94.28 2.874 95.81 20 2.895 96.51 2.936 97.87 2.947 98.23 2.842 94.73 3.149 95.05 -
[1] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239. WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.
[2] 马垚. 变频调速技术下带式输送机节能效果研究[J]. 机械管理开发,2025,40(1):122-124. MA Yao. Research on energy saving effect of belt conveyor under frequency conversion speed control technology[J]. Mechanical Management and Development,2025,40(1):122-124.
[3] 高沛林,苗鑫,杨方. 煤矿带式输送机节能优化控制方法研究[J]. 工矿自动化,2022,48(5):65-71,78. GAO Peilin,MIAO Xin,YANG Fang. Research on energy-saving optimal control method of belt conveyor in coal mine[J]. Journal of Mine Automation,2022,48(5):65-71,78.
[4] 王利红. 变频调速技术在矿井运输系统中的节能应用[J]. 自动化应用,2023(16):48-50. WANG Lihong. Energy saving application of frequency conversion speed regulating technology in mine transportation system[J]. Automation Application,2023(16):48-50.
[5] 张喜荣. 矿井带式输送机节能优化与智能控制系统研究[J]. 石化技术,2024,31(7):370-371. ZHANG Xirong. Research on energy-saving optimization and intelligent control system of mine belt conveyor[J]. Petrochemical Industry Technology,2024,31(7):370-371.
[6] 田培灿. 长距离带式输送机低能耗运行控制系统研究[J]. 能源与节能,2025(1):84-86. TIAN Peican. Operation control system for low energy consumption of long-distance belt conveyors[J]. Energy and Energy Conservation,2025(1):84-86.
[7] 罗涛. 皮带运输机的节能控制系统设计[J]. 机械管理开发,2024,39(9):241-243. LUO Tao. Design of energy-saving control system for a belt conveyor[J]. Mechanical Management and Development,2024,39(9):241-243.
[8] 何增镇,杨志,徐汶菊. 基于融合引斥力与动态窗口法的带式输送机速度自动化控制方法[J]. 自动化与仪表,2025,40(1):114-118. HE Zengzhen,YANG Zhi,XU Wenju. Speed automation control method for belt conveyors based on fusion of attraction repulsion force and dynamic window method[J]. Automation & Instrumentation,2025,40(1):114-118.
[9] 方原柏. 皮带秤系统试验装置发展四十年回顾[J]. 衡器,2021,50(8):42-51. FANG Yuanbai. Review of 40 years development of belt weigher system test device[J]. Weighing Instrument,2021,50(8):42-51.
[10] 陈锦光. 电子皮带秤在物料计量中的误差分析与校正技术研究[J]. 计量与测试技术,2024,51(12):88-90. CHEN Jinguang. Research on error analysis and correction techniques for electronic belt scales in material measurement[J]. Metrology & Measurement Technique,2024,51(12):88-90.
[11] 韦宣,王志浩,周陈龙,等. 电子皮带秤检定方法研究与展望[J]. 工业计量,2023,33(6):21-25. WEI Xuan,WANG Zhihao,ZHOU Chenlong,et al. Research and prospect on verification method of electronic belt scale[J]. Industrial Metrology,2023,33(6):21-25.
[12] 苏毅. 可实现物料流量精确控制的自动核子皮带秤[J]. 中国测试,2012,38(6):57-59,63. SU Yi. Automatic nucleonic belt weigher with function of precise material-flow control[J]. China Measurement & Test,2012,38(6):57-59,63.
[13] 刘飞,张乐群,潘红光,等. 带式输送机煤量检测技术及其发展趋势[J]. 中国煤炭,2023,49(9):77-83. LIU Fei,ZHANG Lequn,PAN Hongguang,et al. Research on coal quantity detection technologies of belt conveyor and their development trend[J]. China Coal,2023,49(9):77-83.
[14] 肖云鹏,朱奇健,林珂. 核辐射环境监测与辐射防护方法研究[J]. 中国高新科技,2024(8):154-156. XIAO Yunpeng,ZHU Qijian,LIN Ke. Research on nuclear radiation environment monitoring and radiation protection methods[J]. China High-Tech,2024(8):154-156.
[15] 季现亮,张文杰,王玉强,等. 基于机器视觉的带式输送机高精度煤流检测研究[J]. 工矿自动化,2024,50(5):75-83. JI Xianliang,ZHANG Wenjie,WANG Yuqiang,et al. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation,2024,50(5):75-83.
[16] 王涛. 基于改进MobileNet的带式输送机煤量检测研究[J]. 能源与环保,2024,46(7):198-202. WANG Tao. Research on coal quantity detection of belt conveyors based on improved MobileNet[J]. China Energy and Environmental Protection,2024,46(7):198-202.
[17] 仝莉. 基于机器视觉的带式输送机自动调速关键技术研究[J]. 山东煤炭科技,2024,42(8):122-126. TONG Li. Research on key technology for automatic speed regulation of belt conveyor based on machine vision[J]. Shandong Coal Science and Technology,2024,42(8):122-126.
[18] 王德记,马磊,郭伟东. 基于机器视觉的煤矿井下带式输送机节能调速控制系统设计[J]. 煤炭工程,2024,56(6):28-34. WANG Deji,MA Lei,GUO Weidong. Design of energy-saving speed control system for belt conveyor in underground coal mines based on machine vision[J]. Coal Engineering,2024,56(6):28-34.
[19] 任建超,张虎. 基于机器视觉的煤矿带式输送机智能调速系统研究[J]. 煤矿机械,2025,46(2):193-195. REN Jianchao,ZHANG Hu. Research on intelligent speed regulation system for coal mine belt conveyor based on machine vision[J]. Coal Mine Machinery,2025,46(2):193-195.
[20] 中国矿业大学(北京). 基于激光测距的皮带秤:CN201510014054.8[P]. 2015-01-13. China University of Mining and Technology-Beijing. Belt scale based on laser ranging:CN201510014054.8[P]. 2015-01-13.
[21] 林昊,桂林,王炼栋,等. 积分时间对TOF激光雷达测距误差影响[J]. 上海第二工业大学学报,2023,40(2):133-140. LIN Hao,GUI Lin,WANG Liandong,et al. Effect of integration time on TOF LiDAR ranging error[J]. Journal of Shanghai Polytechnic University,2023,40(2):133-140.
[22] 李蕊,沈晓斌. 基于Akima插值的机械特性曲线重采样实现[J]. 中国农机化学报,2015,36(3):286-288,304. LI Rui,SHEN Xiaobin. Implementation of mechanical characteristic curves resampling based onAkima interpolation[J]. Journal of Chinese Agricultural Mechanization,2015,36(3):286-288,304.