基于Akima插值的带式输送机物料流量激光检测方法

刘毅, 刘毅, 孙静, 赵子贤

刘毅,刘毅,孙静,等. 基于Akima插值的带式输送机物料流量激光检测方法[J]. 工矿自动化,2025,51(5):57-63. DOI: 10.13272/j.issn.1671-251x.2025020044
引用本文: 刘毅,刘毅,孙静,等. 基于Akima插值的带式输送机物料流量激光检测方法[J]. 工矿自动化,2025,51(5):57-63. DOI: 10.13272/j.issn.1671-251x.2025020044
LIU Yi, LIU Yi, SUN Jing, et al. Laser-based material flow detection method for belt conveyors using Akima interpolation[J]. Journal of Mine Automation,2025,51(5):57-63. DOI: 10.13272/j.issn.1671-251x.2025020044
Citation: LIU Yi, LIU Yi, SUN Jing, et al. Laser-based material flow detection method for belt conveyors using Akima interpolation[J]. Journal of Mine Automation,2025,51(5):57-63. DOI: 10.13272/j.issn.1671-251x.2025020044

基于Akima插值的带式输送机物料流量激光检测方法

基金项目: 

国家自然科学基金项目(52364017,52374165)。

详细信息
    作者简介:

    刘毅(1973—),男,山西临汾人,副教授,主要从事矿井智能监控、监视、定位方面的研究工作,E-mail:liu_y@sina.com

  • 中图分类号: TD634

Laser-based material flow detection method for belt conveyors using Akima interpolation

  • 摘要:

    针对现有基于激光雷达的带式输送机物料流量检测方法易受异常点云数据影响、难以准确描述物料表面状态的问题,提出一种基于Akima插值的带式输送机物料流量激光检测方法。通过激光雷达获取输送带点云轨迹,并进行直通滤波和离群点去噪处理;采用Akima插值法获取带式输送机上物料的截面积,结合输送带运行速度和激光雷达扫描频率,计算单个扫描周期内的物料体积;通过对任意时间段的测量数据进行积分,获得该时间段内的物料总体积。仿真结果表明,对激光雷达输出的点云进行离群点去噪处理,能够有效识别异常的点云数据并对其进行修正,修正后的计算结果更接近真实的物料截面积。分别采用扇形−三角形计算法和Akima插值法对不同体积和带速的情况进行对比实验,结果表明,扇形−三角形计算法的精度较低且不稳定,而Akima插值法的精度全部达90%以上,可靠性高,可以准确得到输送物料的瞬时流量和总流量。

    Abstract:

    To address the issue that existing LiDAR-based material flow detection methods for belt conveyors are susceptible to abnormal point cloud data and struggle to accurately describe the surface state of materials, a laser-based material flow detection method for belt conveyors using Akima interpolation is proposed. The method involved acquiring point cloud trajectories of the conveyor belt using LiDAR, followed by pass-through filtering and outlier noise removal. The Akima interpolation method was then used to obtain the cross-sectional area of material on the belt. Combined with the conveyor's operating speed and LiDAR scanning frequency, the material volume within a single scan cycle was calculated. By integrating the measurement data over any given time period, the total material volume during that period could be obtained. Simulation results showed that denoising outlier points from the LiDAR output point cloud could effectively identify and correct abnormal data, resulting in calculated values that were closer to the actual material cross-sectional area. Comparative experiments using both the sector-triangle calculation method and the Akima interpolation method under varying volumes and belt speeds demonstrated that the sector-triangle method had lower and less stable accuracy, while the Akima interpolation method consistently achieved accuracy above 90%, offering high reliability and enabling accurate measurement of both instantaneous and total material flow.

  • 图  1   TOF测量原理

    Figure  1.   TOF measurement principle

    图  2   激光雷达安装位置

    Figure  2.   Installation position of LiDAR

    图  3   激光雷达获取的输送带点云轨迹

    Figure  3.   Point cloud trajectory of the conveyor belt obtained by LiDAR

    图  4   每个扫描周期内物料体积计算

    Figure  4.   Calculation of material volume within each scanning cycle

    图  5   带式输送机输送物料总体积计算

    Figure  5.   Calculation of total volume of materials conveyed by belt conveyor

    图  6   带式输送机空载时的激光扫描截面

    Figure  6.   Laser scanning cross-section of belt conveyor under no-load condition

    图  7   插值前后输送带点云分布

    Figure  7.   Point cloud distribution of the conveyor belt before and after interpolation

    图  8   带式输送机运输物料截面

    Figure  8.   Cross-section of belt conveyor transporting materials

    图  9   带式输送机输送物料仿真截面

    Figure  9.   Simulated cross-section of materials on belt conveyor

    图  10   点云异常

    Figure  10.   Point cloud anomaly

    图  11   离群点去噪后点云分布

    Figure  11.   Distribution of point cloud after outlier denoising

    图  12   实验平台

    Figure  12.   Experimental platform

    图  13   不同带速时检测结果

    Figure  13.   Test results under different belt speed

    表  1   扇形−三角形计算法实验数据

    Table  1   Experimental data of sector-triangle calculation method

    实际体积/dm3带速/(m·min−1实验1实验2实验3实验4实验5
    检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%
    1.852.01188.261.73196.181.59188.411.68993.831.75697.61
    101.94591.971.92493.112.05385.961.92393.171.80699.67
    151.81299.341.80199.922.00288.781.88495.321.86996.17
    202.20277.632.04886.232.08184.382.04386.522.09683.54
    2.452.73785.962.59292.02.58192.442.44698.082.57792.61
    102.77684.352.58992.132.66489.002.85980.872.74185.79
    152.79983.372.88879.682.69787.612.88379.892.63990.05
    202.66788.872.78583.972.70887.162.71087.072.81082.92
    3.053.16594.493.17594.183.26991.043.39186.983.23392.22
    103.21292.943.15194.973.27590.833.31889.413.42086.01
    153.30089.983.35288.283.38187.283.47484.183.35288.28
    203.23092.343.40286.593.47084.343.17594.163.50183.31
    下载: 导出CSV

    表  2   Akima插值法实验数据

    Table  2   Experimental data of Akima interpolation method

    实际体积/dm3带速/(m·min−1实验1实验2实验3实验4实验5
    检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%检测值/dm3精度/%
    1.851.77098.361.73996.631.67192.811.68793.721.86796.29
    101.89494.781.81998.941.85397.041.62190.031.74596.97
    151.73496.361.95491.441.69594.171.79599.741.73396.27
    201.72896.011.58387.931.62290.111.74096.671.75797.61
    2.452.63790.132.40799.712.54793.862.20691.912.33597.29
    102.19791.552.33297.182.43398.612.38399.312.56393.2
    152.39999.942.58192.452.52394.872.61691.022.32696.93
    202.20992.062.30295.902.24193.372.54693.922.62490.67
    3.053.00299.942.96598.853.07197.633.26491.223.10196.65
    102.98699.522.87595.853.05098.343.05598.183.07697.46
    152.95198.352.87495.813.02999.043.17194.282.87495.81
    202.89596.512.93697.872.94798.232.84294.733.14995.05
    下载: 导出CSV
  • [1] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.

    WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.

    [2] 马垚. 变频调速技术下带式输送机节能效果研究[J]. 机械管理开发,2025,40(1):122-124.

    MA Yao. Research on energy saving effect of belt conveyor under frequency conversion speed control technology[J]. Mechanical Management and Development,2025,40(1):122-124.

    [3] 高沛林,苗鑫,杨方. 煤矿带式输送机节能优化控制方法研究[J]. 工矿自动化,2022,48(5):65-71,78.

    GAO Peilin,MIAO Xin,YANG Fang. Research on energy-saving optimal control method of belt conveyor in coal mine[J]. Journal of Mine Automation,2022,48(5):65-71,78.

    [4] 王利红. 变频调速技术在矿井运输系统中的节能应用[J]. 自动化应用,2023(16):48-50.

    WANG Lihong. Energy saving application of frequency conversion speed regulating technology in mine transportation system[J]. Automation Application,2023(16):48-50.

    [5] 张喜荣. 矿井带式输送机节能优化与智能控制系统研究[J]. 石化技术,2024,31(7):370-371.

    ZHANG Xirong. Research on energy-saving optimization and intelligent control system of mine belt conveyor[J]. Petrochemical Industry Technology,2024,31(7):370-371.

    [6] 田培灿. 长距离带式输送机低能耗运行控制系统研究[J]. 能源与节能,2025(1):84-86.

    TIAN Peican. Operation control system for low energy consumption of long-distance belt conveyors[J]. Energy and Energy Conservation,2025(1):84-86.

    [7] 罗涛. 皮带运输机的节能控制系统设计[J]. 机械管理开发,2024,39(9):241-243.

    LUO Tao. Design of energy-saving control system for a belt conveyor[J]. Mechanical Management and Development,2024,39(9):241-243.

    [8] 何增镇,杨志,徐汶菊. 基于融合引斥力与动态窗口法的带式输送机速度自动化控制方法[J]. 自动化与仪表,2025,40(1):114-118.

    HE Zengzhen,YANG Zhi,XU Wenju. Speed automation control method for belt conveyors based on fusion of attraction repulsion force and dynamic window method[J]. Automation & Instrumentation,2025,40(1):114-118.

    [9] 方原柏. 皮带秤系统试验装置发展四十年回顾[J]. 衡器,2021,50(8):42-51.

    FANG Yuanbai. Review of 40 years development of belt weigher system test device[J]. Weighing Instrument,2021,50(8):42-51.

    [10] 陈锦光. 电子皮带秤在物料计量中的误差分析与校正技术研究[J]. 计量与测试技术,2024,51(12):88-90.

    CHEN Jinguang. Research on error analysis and correction techniques for electronic belt scales in material measurement[J]. Metrology & Measurement Technique,2024,51(12):88-90.

    [11] 韦宣,王志浩,周陈龙,等. 电子皮带秤检定方法研究与展望[J]. 工业计量,2023,33(6):21-25.

    WEI Xuan,WANG Zhihao,ZHOU Chenlong,et al. Research and prospect on verification method of electronic belt scale[J]. Industrial Metrology,2023,33(6):21-25.

    [12] 苏毅. 可实现物料流量精确控制的自动核子皮带秤[J]. 中国测试,2012,38(6):57-59,63.

    SU Yi. Automatic nucleonic belt weigher with function of precise material-flow control[J]. China Measurement & Test,2012,38(6):57-59,63.

    [13] 刘飞,张乐群,潘红光,等. 带式输送机煤量检测技术及其发展趋势[J]. 中国煤炭,2023,49(9):77-83.

    LIU Fei,ZHANG Lequn,PAN Hongguang,et al. Research on coal quantity detection technologies of belt conveyor and their development trend[J]. China Coal,2023,49(9):77-83.

    [14] 肖云鹏,朱奇健,林珂. 核辐射环境监测与辐射防护方法研究[J]. 中国高新科技,2024(8):154-156.

    XIAO Yunpeng,ZHU Qijian,LIN Ke. Research on nuclear radiation environment monitoring and radiation protection methods[J]. China High-Tech,2024(8):154-156.

    [15] 季现亮,张文杰,王玉强,等. 基于机器视觉的带式输送机高精度煤流检测研究[J]. 工矿自动化,2024,50(5):75-83.

    JI Xianliang,ZHANG Wenjie,WANG Yuqiang,et al. Research on high-precision coal flow detection of belt conveyors based on machine vision[J]. Journal of Mine Automation,2024,50(5):75-83.

    [16] 王涛. 基于改进MobileNet的带式输送机煤量检测研究[J]. 能源与环保,2024,46(7):198-202.

    WANG Tao. Research on coal quantity detection of belt conveyors based on improved MobileNet[J]. China Energy and Environmental Protection,2024,46(7):198-202.

    [17] 仝莉. 基于机器视觉的带式输送机自动调速关键技术研究[J]. 山东煤炭科技,2024,42(8):122-126.

    TONG Li. Research on key technology for automatic speed regulation of belt conveyor based on machine vision[J]. Shandong Coal Science and Technology,2024,42(8):122-126.

    [18] 王德记,马磊,郭伟东. 基于机器视觉的煤矿井下带式输送机节能调速控制系统设计[J]. 煤炭工程,2024,56(6):28-34.

    WANG Deji,MA Lei,GUO Weidong. Design of energy-saving speed control system for belt conveyor in underground coal mines based on machine vision[J]. Coal Engineering,2024,56(6):28-34.

    [19] 任建超,张虎. 基于机器视觉的煤矿带式输送机智能调速系统研究[J]. 煤矿机械,2025,46(2):193-195.

    REN Jianchao,ZHANG Hu. Research on intelligent speed regulation system for coal mine belt conveyor based on machine vision[J]. Coal Mine Machinery,2025,46(2):193-195.

    [20] 中国矿业大学(北京). 基于激光测距的皮带秤:CN201510014054.8[P]. 2015-01-13.

    China University of Mining and Technology-Beijing. Belt scale based on laser ranging:CN201510014054.8[P]. 2015-01-13.

    [21] 林昊,桂林,王炼栋,等. 积分时间对TOF激光雷达测距误差影响[J]. 上海第二工业大学学报,2023,40(2):133-140.

    LIN Hao,GUI Lin,WANG Liandong,et al. Effect of integration time on TOF LiDAR ranging error[J]. Journal of Shanghai Polytechnic University,2023,40(2):133-140.

    [22] 李蕊,沈晓斌. 基于Akima插值的机械特性曲线重采样实现[J]. 中国农机化学报,2015,36(3):286-288,304.

    LI Rui,SHEN Xiaobin. Implementation of mechanical characteristic curves resampling based onAkima interpolation[J]. Journal of Chinese Agricultural Mechanization,2015,36(3):286-288,304.

图(13)  /  表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  0
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-19
  • 修回日期:  2025-05-22
  • 网络出版日期:  2025-05-27
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回