基于改进滑模控制的锚杆钻臂运动控制研究

Research on Anchor Bolt Drilling Arm Motion Control Based on Improved Sliding Mode Control

  • 摘要: 针对传统PID控制及滑模控制(SMC)等方法在锚杆钻臂运动轨迹跟踪控制中存在的精度不足问题,本研究提出了一种基于迭代学习补偿的滑模自抗扰控制(Iterative Learning Compensation based Sliding Mode Active Disturbance Rejection Control, ILC-SMADRC)算法,融合迭代学习机制与滑模自抗扰控制策略,显著提升了锚杆钻臂运动轨迹跟踪的精度与系统稳定性。首先基于D-H参数法构建了锚杆钻臂的动力学数学模型,继而设计了具有迭代学习补偿功能的滑模自抗扰控制器,实现了对系统不确定性和外部扰动的有效抑制;最后,利用MATLAB/Simulink平台构建了基于ILC-SMADRC算法的锚杆钻臂控制仿真实验系统。仿真实验结果表明,与传统PID控制和SMC算法相比,ILC-SMADRC算法在轨迹跟踪精度方面具有显著优势,其累计误差分别降低了83.5%和59.2%。同时,该算法在系统动态响应特性和鲁棒性方面也表现出更优越的性能。研究表明ILC-SMADRC算法能够有效提升锚杆钻臂在井下复杂工况下的运动控制稳定性,为矿山智能化开采装备的精确控制提供了新的理论方法。

     

    Abstract: To address the low tracking accuracy of traditional PID control and sliding mode control (SMC) in the motion trajectory tracking of bolter drilling booms, this study proposes a Iterative Learning Compensation-based Sliding Mode Active Disturbance Rejection Control (ILC-SMADRC) algorithm. By integrating an iterative learning mechanism with a sliding mode active disturbance rejection control strategy, the proposed method significantly improves the trajectory tracking precision and system stability of the bolter drilling boom. First, a dynamic mathematical model of the bolter drilling boom is established using the D-H parameter method. Subsequently, a sliding mode active disturbance rejection controller with iterative learning compensation is designed to effectively suppress system uncertainties and external disturbances. A simulation experimental platform for the bolter drilling boom control system, based on the ILC-SMADRC algorithm, is developed using MATLAB/Simulink. Simulation results demonstrated that the ILC-SMADRC algorithm outperforms conventional PID control and SMC in trajectory tracking accuracy, reducing cumulative errors by 83.5% and 59.2%, respectively. Moreover, the proposed algorithm exhibits superior dynamic response characteristics and robustness. The study confirms that the ILC-SMADRC algorithm effectively enhances motion control stability of bolter drilling booms under the complex underground working conditions, providing a new theoretical framework for precise control of intelligent mining equipment.

     

/

返回文章
返回