Loading [MathJax]/jax/output/SVG/jax.js

一种矿用变形履带式管道机器人设计及牵引性能分析

王国锐, 闫宏伟, 寇子明, 卫红梅, 任浩杰, 马耀辉

王国锐,闫宏伟,寇子明,等. 一种矿用变形履带式管道机器人设计及牵引性能分析[J]. 工矿自动化,2025,51(6):71-80. DOI: 10.13272/j.issn.1671-251x.2025040091
引用本文: 王国锐,闫宏伟,寇子明,等. 一种矿用变形履带式管道机器人设计及牵引性能分析[J]. 工矿自动化,2025,51(6):71-80. DOI: 10.13272/j.issn.1671-251x.2025040091
WANG Guorui, YAN Hongwei, KOU Ziming, et al. Design and traction performance analysis of a mine deformable crawler pipeline robot[J]. Journal of Mine Automation,2025,51(6):71-80. DOI: 10.13272/j.issn.1671-251x.2025040091
Citation: WANG Guorui, YAN Hongwei, KOU Ziming, et al. Design and traction performance analysis of a mine deformable crawler pipeline robot[J]. Journal of Mine Automation,2025,51(6):71-80. DOI: 10.13272/j.issn.1671-251x.2025040091

一种矿用变形履带式管道机器人设计及牵引性能分析

基金项目: 

山西省科技合作交流专项项目(202104041101001); 中央引导地方科技发展资金项目(YDZJSX2024C011)。

详细信息
    作者简介:

    王国锐(2000—),男,山西晋中人,硕士研究生,研究方向为智能机器人与应急防控,E-mail:1835526076@qq.com

    通讯作者:

    闫宏伟(1969—),男,山西太原人,教授,博士,研究方向为应急防控智能装备,E-mail:aweigeyan@nuc.edu.cn

  • 中图分类号: TD67

Design and traction performance analysis of a mine deformable crawler pipeline robot

  • 摘要:

    矿用履带式管道机器人依靠履带与管壁之间较大的接触面积,具备良好的越障能力和运行稳定性,适用于复杂和多变的管道环境。目前矿用履带式管道机器人存在结构复杂、不能主动控制变径尺寸、机器人牵引越障性能差等问题。提出一种矿用变形履带式管道机器人,可自适应DN180—DN220管道环境。该机器人包括1个中心变径模块和3个履带足模块。每个履带足模块配备独立驱动电动机,驱动电动机的输出轴通过锥齿轮传递转矩,带动履带足同步轮旋转,从而给机身提供前进动力。履带足模块可变形抬升,从而通过台阶式障碍物。中心变径模块可通过电动机和回压弹簧调节连杆伸缩,保证履带足与管壁间的正压力,使机器人与管道中心线对齐,达到柔性变径效果。建立了管道机器人在水平、倾斜、有障碍物管道中及拖缆情况下的牵引动力学模型,通过分析得出:管道机器人成功越障的关键是履带足模块的驱动电动机需同时满足履带足抬升转矩、前轮旋转转矩及克服摩擦和拖缆阻力3个动力学约束。 仿真结果表明:① 模拟工业管道环境,得出该管道机器人机身最佳弹簧弹性系数为4 N/mm。② 模拟越障情景,得出该管道机器人能够通过最大台阶式障碍物高度为15 mm,此时电动机转矩达到峰值,约为340 N·mm。实验结果表明:该管道机器人的牵引力平均值为58 N,能成功越过15 mm障碍物,越障过程中驱动电动机电流稳定,符合仿真模拟结果和机器人设计要求,验证了该管道机器人结构设计合理,并具有优越的牵引性能。

    Abstract:

    The mine crawler pipeline robot, with its large contact area between the crawlers and the pipe wall, has strong obstacle-crossing ability and stability, making it suitable for complex and variable pipeline environments. Currently, mine crawler pipeline robots face issues such as complex structure, inability to actively control diameter variations, and poor traction and obstacle-crossing performance. A mine deformable crawler pipeline robot was proposed, which could adapt to pipeline environments with diameters ranging from DN180 to DN220. The robot included one central diameter-changing module and three crawler foot modules. Each crawler foot module was equipped with an independent drive motor, whose output shaft transmitted torque via bevel gears to drive the crawler foot synchronous wheels, thus providing forward propulsion for the robot body. The crawler foot modules were deformable and could be raised, allowing the robot to cross step-like obstacles. The central diameter-changing module could adjust the linkage extension and retraction through the motor and backpressure spring, ensuring the positive pressure between the crawler foot and the pipe wall, thus aligning the robot with the pipeline centerline and achieved flexible diameter variation. Traction dynamics models for the pipeline robot under horizontal, inclined, obstructed pipeline, and cable-dragging conditions was established. The analysis of the models revealed that the key to successful obstacle crossing was that the drive motors of the crawler foot modules must simultaneously meet three dynamic constraints: the lifting torque of the crawler foot, the rotational torque of the front wheel, and the forces required to overcome friction and cable-dragging resistance. Simulation results showed that: ① in an industrial pipeline environment simulation, the optimal spring coefficient for the robot body was found to be 4 N/mm. ② In an obstacle-crossing scenario simulation, the robot was able to cross an obstacle with a maximum step height of 15 mm, with the motor torque reaching its peak at approximately 340 N·mm. Experimental results showed that the robot's average traction force was 58 N, and it successfully crossed obstacles up to 15 mm high. During the obstacle-crossing process, the motor current remained stable, aligning with both the simulation results and the design requirements, thus verifying the rationality of the robot's structural design and confirming its excellent traction performance.

  • 图  1   变形履带式管道机器人结构

    Figure  1.   Structure of deformable crawler pipeline robot

    图  2   变形式履带足模块结构

    Figure  2.   Structure of deformable crawler foot module

    图  3   履带足变形原理

    Figure  3.   Deformation principle of crawler foot

    图  4   中心变径模块结构

    Figure  4.   Structure of central variable diameter module

    图  5   中心变径模块适应管径

    Figure  5.   Adaptation of central diameter changing module to pipe diameter

    图  6   控制系统结构

    Figure  6.   Structure of control system

    图  7   变形履带式管道机器人牵引力分析模型

    Figure  7.   Traction analysis model of deformable crawler pipeline robot

    图  8   驱动因子Ig、机身姿态角α及管道坡度角γ的关系

    Figure  8.   Relationship of driving factor Ig, fuselage pose angle α and pipeline slope angle γ

    图  9   直管拖缆阻力分析

    Figure  9.   Analysis of straight pipe towing cable resistance

    图  10   变形履带式管道机器人越障过程

    Figure  10.   Obstacle negotiation process of deformable crawler pipeline robot

    图  11   履带足越障力学模型

    Figure  11.   Dynamic model of crawler foot during obstacle negotiation

    图  12   牵引力仿真测试环境

    Figure  12.   Traction simulation test environment

    图  13   牵引力仿真结果

    Figure  13.   Traction simulation results

    图  14   不同工业管道环境下管道机器人的牵引力仿真结果

    Figure  14.   Traction simulation results of pipeline robot under different industrial pipeline environments

    图  15   管道机器人越障仿真测试环境

    Figure  15.   Simulation test environment for obstacle crossing of pipeline robot

    图  16   越障过程线性位移与电动机转矩

    Figure  16.   Linear displacement and motor torque during obstacle crossing

    图  17   履带式管道机器人系统组成

    Figure  17.   Crawler pipeline robot system components

    图  18   牵引力测试环境

    Figure  18.   Traction test environment

    图  19   变形履带式机器人越障测试

    Figure  19.   Obstacle crossing test of deformable crawler robot

    图  20   电动机电流变化曲线

    Figure  20.   Current variation curves of motor

    表  1   矿用变形履带式管道机器人主要技术参数

    Table  1   Main technical parameters of mining deformable crawler pipeline robot

    技术参数 技术参数
    机器人长度/mm ≤300 牵引力/N ≥30
    机器人质量/kg ≤8.5 越障高度/mm ≥15
    适应管径/mm 180~220 动力来源 拖缆式
    最大速度/(m·min−1 ≥3
    下载: 导出CSV

    表  2   履带足与管道接触参数

    Table  2   Contact parameters between crawler foot and pipeline

    工况 管道材质 静摩擦因数 动摩擦因数
    钢(干性) 0.25 0.30
    钢(油性) 0.05 0.08
    铝(干性) 0.20 0.25
    铝(油性) 0.03 0.05
    下载: 导出CSV
  • [1]

    WU Tingting,ZHAO Hong,GAO Boxuan,et al. Structural optimization strategy of pipe isolation tool by dynamic plugging process analysis[J]. Petroleum Science,2021,18(6):1829-1839. DOI: 10.1016/j.petsci.2021.09.010

    [2] 古文哲,杨宝贵,顾成进. 煤炭管道输送技术应用前景研究[J]. 煤炭工程,2023,55(2):158-163.

    GU Wenzhe,YANG Baogui,GU Chengjin. Application prospect for pipeline transportation of coal[J]. Coal Engineering,2023,55(2):158-163.

    [3] 魏明生,童敏明,张春亚,等. 管道清堵机器人电磁定位系统[J]. 工矿自动化,2016,42(6):1-4.

    WEI Mingsheng,TONG Minming,ZHANG Chunya,et al. Electromagnetic positioning system of pipeline blockage clearing robot[J]. Industry and Mine Automation,2016,42(6):1-4.

    [4]

    TORAJIZADEH H,ASADIRAD A,MASHAYEKHI E,et al. Design and manufacturing a novel screw-in-pipe inspection robot with steering capability[J]. Journal of Field Robotics,2023,40(3):429-446. DOI: 10.1002/rob.22136

    [5]

    YAN Hongwei,ZHAO Pengyang,XIAO Canjun,et al. Design and kinematic characteristic analysis of a spiral robot for oil and gas pipeline inspections[J]. Actuators,2023,12(6). DOI: 10.3390/act12060240.

    [6]

    TANG Yinlong,SONG Huadong,YU Yating,et al. Dynamic simulation analysis and experiment of large-caliber self-propelled pipeline crawler based on ADAMS[J]. Journal of Physics:Conference Series,2021,2095(1). DOI: 10.1088/1742-6596/2095/1/012049.

    [7]

    ZHAO Jianguo,WANG Ju,LIU Qingyou,et al. A review of mechanical model,structure,and prospect for long-distance pipeline pig and robot[J]. Robotica,2022,40(12):4271-4307. DOI: 10.1017/S026357472200090X

    [8]

    ZHANG Shuo,DUBLJEVIC S. Trajectory determination for pipelines using an inspection robot and pipeline features[J]. Metrology and Measurement Systems,2021:439-453.

    [9] 李琴,贺一烜,黄志强,等. 管道机器人变径机构设计及垂直管道内移动可行性分析[J]. 制造业自动化,2021,43(1):104-108. DOI: 10.3969/j.issn.1009-0134.2021.01.023

    LI Qin,HE Yixuan,HUANG Zhiqiang,et al. Design of reducer mechanism of pipeline robot and feasibility analysis of movement in vertical pipeline[J]. Manufacturing Automation,2021,43(1):104-108. DOI: 10.3969/j.issn.1009-0134.2021.01.023

    [10] 吴秀利,陈朋威. 轮履复合型管道机器人的设计与管道通过性研究[J]. 机械与电子,2025,43(3):41-45. DOI: 10.3969/j.issn.1001-2257.2025.03.007

    WU Xiuli,CHEN Pengwei. Design of wheel-track hybrid pipeline robots and study on pipeline passage performance[J]. Machinery & Electronics,2025,43(3):41-45. DOI: 10.3969/j.issn.1001-2257.2025.03.007

    [11] 钱佳旺,李会军,宋爱国. 一种小型履带式管道机器人的研究与设计[J]. 测控技术,2024,43(6):1-7.

    QIAN Jiawang,LI Huijun,SONG Aiguo. Research and design of a small crawler pipeline robot[J]. Measurement & Control Technology,2024,43(6):1-7.

    [12] 喻九阳,张德安,戴耀南,等. 履带式油气管道巡检机器人爬坡特性分析[J]. 机床与液压,2023,51(15):57-61. DOI: 10.3969/j.issn.1001-3881.2023.15.009

    YU Jiuyang,ZHANG De'an,DAI Yaonan,et al. Climbing characteristic analysis of crawler oil and gas pipeline inspection robot[J]. Machine Tool & Hydraulics,2023,51(15):57-61. DOI: 10.3969/j.issn.1001-3881.2023.15.009

    [13] 李健,闫宏伟,刘翼,等. 履带式管道巡检修复机器人弯管通过性研究[J]. 机械传动,2023,47(4):164-170.

    LI Jian,YAN Hongwei,LIU Yi,et al. Research on the elbow passing ability of crawler pipeline inspection and repair robots[J]. Journal of Mechanical Transmission,2023,47(4):164-170.

    [14]

    MIAO Xingyuan,ZHAO Hong,GAO Boxuan,et al. Motion analysis and control of the pipeline robot passing through girth weld and inclination in natural gas pipeline[J]. Journal of Natural Gas Science and Engineering,2022,104. DOI: 10.1016/j.jngse.2022.104662.

    [15] 赵鹏洋,闫宏伟,张登崤,等. 一种矿用管道检测机器人设计及牵引性能分析[J]. 工矿自动化,2024,50(1):122-130,162.

    ZHAO Pengyang,YAN Hongwei,ZHANG Dengxiao,et al. Mine pipeline inspection robot design and traction performance analysis[J]. Journal of Mine Automation,2024,50(1):122-130,162.

    [16]

    YIN Jihua,LIU Xuemei,WANG Youqiang,et al. Design and motion mechanism analysis of screw-driven in-pipe inspection robot based on novel adapting mechanism[J]. Robotica,2024,42(4):1297-1319. DOI: 10.1017/S0263574724000316

    [17]

    YEH T J,WENG T H. Analysis and control of an in-pipe wheeled robot with spiral moving capability[J]. Journal of Autonomous Vehicles and Systems,2021,1(1). DOI: 10.1115/1.4048376.

    [18] 蒋东升,方天阳,胡姗姗,等. 可变径防侧倾清扫管道机器人结构与通过性能分析[J]. 长沙大学学报,2024,38(2):41-50. DOI: 10.3969/j.issn.1008-4681.2024.02.007

    JIANG Dongsheng,FANG Tianyang,HU Shanshan,et al. Structure and passing capability analysis of a variable diameter anti roll pipeline cleaning robot[J]. Journal of Changsha University,2024,38(2):41-50. DOI: 10.3969/j.issn.1008-4681.2024.02.007

    [19]

    ZHENG Lingling,GUO Shuxiang,WANG Zixu. Performance evaluation of an outer spiral microrobot in pipes in different environments[C]. IEEE International Conference on Mechatronics and Automation,Beijing,2020. DOI: 10.1109/ICMA49215.2020.9233681.

    [20] 薛春荣,李小波. 矿用救援探测机器人系统设计与研究[J]. 煤炭工程,2023,55(9):170-174.

    XUE Chunrong,LI Xiaobo. Research and design of mining rescue and detection robot system[J]. Coal Engineering,2023,55(9):170-174.

    [21]

    TOLMAC J,PRVULOVIC S,NEDIC M,et al. Analysis of the main parameters of crude oil pipeline transport[J]. Hemijska Industrija,2020,74(2):79-90. DOI: 10.2298/HEMIND190906010T

  • 期刊类型引用(6)

    1. 杜京义,党梦珂,乔磊,魏美婷,郝乐. 基于改进时空图卷积神经网络的钻杆计数方法. 工矿自动化. 2023(01): 90-98 . 本站查看
    2. 张艳花,白尚旺. 煤矿井下承人装置违规检测研究. 计算机与数字工程. 2023(03): 700-705 . 百度学术
    3. 张栋,姜媛媛. 基于改进MobileNetV2的钻杆计数方法. 工矿自动化. 2022(10): 69-75 . 本站查看
    4. 张栋,姜媛媛. 融合注意力机制与逆残差结构的轻量级钻机目标检测方法. 电子测量与仪器学报. 2022(11): 201-210 . 百度学术
    5. 魏力,云霄,程小舟,孙彦景. 井下复杂环境人员重识别研究. 工矿自动化. 2021(06): 63-70 . 本站查看
    6. 荣耀,安晓宇. 智能化开采中视频信息的应用现状及展望. 煤炭科学技术. 2021(S1): 119-123 . 百度学术

    其他类型引用(4)

图(20)  /  表(2)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  5
  • PDF下载量:  27
  • 被引次数: 10
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-06-15
  • 网络出版日期:  2025-06-25
  • 刊出日期:  2025-06-14

目录

    MA Yaohui

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回