气体抽排对上隅角低氧治理效果及采空区煤自燃影响研究

刘刚, 褚廷湘, 朱天儒, 张曦, 王雨钒, 孟金伟

刘刚,褚廷湘,朱天儒,等. 气体抽排对上隅角低氧治理效果及采空区煤自燃影响研究[J]. 工矿自动化,2025,51(5):87-95. DOI: 10.13272/j.issn.1671-251x.2025040003
引用本文: 刘刚,褚廷湘,朱天儒,等. 气体抽排对上隅角低氧治理效果及采空区煤自燃影响研究[J]. 工矿自动化,2025,51(5):87-95. DOI: 10.13272/j.issn.1671-251x.2025040003
LIU Gang, CHU Tingxiang, ZHU Tianru, et al. Effect of gas extraction on mitigating low-oxygen conditions in upper corners and its impact on coal spontaneous combustion in goaf[J]. Journal of Mine Automation,2025,51(5):87-95. DOI: 10.13272/j.issn.1671-251x.2025040003
Citation: LIU Gang, CHU Tingxiang, ZHU Tianru, et al. Effect of gas extraction on mitigating low-oxygen conditions in upper corners and its impact on coal spontaneous combustion in goaf[J]. Journal of Mine Automation,2025,51(5):87-95. DOI: 10.13272/j.issn.1671-251x.2025040003

气体抽排对上隅角低氧治理效果及采空区煤自燃影响研究

基金项目: 

国家自然科学基金面上项目(52274199,51774114)。

详细信息
    作者简介:

    刘刚(1986—),男,湖北石首人,高级工程师,硕士,主要从事矿山开采与安全管理工作,E-mail:260761191@qq.com

    通讯作者:

    褚廷湘(1981—),男,河南南阳人,教授,博士,研究方向为矿井瓦斯与煤自燃复合灾害防控,E-mail:ctx1900@126.com

  • 中图分类号: TD315

Effect of gas extraction on mitigating low-oxygen conditions in upper corners and its impact on coal spontaneous combustion in goaf

  • 摘要:

    气体抽排技术作为治理浅埋煤层工作面上隅角低氧现象的有效措施,其应用过程中存在采空区漏风量增加可能导致煤自燃风险升高的问题。以中煤平朔集团有限公司井工一矿19112工作面为研究对象,在典型浅埋煤层工作面上隅角低氧致因分析基础上,构建了采空区流−固−化多场耦合数学模型,采用计算流体动力学(CFD)数值模拟方法分析了90,120,240,360 m3/min气体抽排流量下上隅角低氧治理效果与采空区煤自燃风险程度。研究结果表明:① 上隅角低氧现象是由煤层处于CO2−N2带且惰性气体下泄、采空区遗煤低温氧化、采空区与地表形成贯通裂隙发育通道及工作面U型负压通风方式等因素共同作用形成的。② 当气体抽排流量提升至360 m3/min时,上隅角区域O2体积分数显著提升,低氧现象得到有效控制。③ 低氧范围宽度与气体抽排流量呈二次函数拟合关系。④ 在上隅角安装抽排通风机进行抽排时虽然会使采空区氧化带宽度有一定程度增加,但其最大宽度(53.8 m)仍远低于理论采空区氧化带宽度安全阈值(604.8 m),表明气体抽排技术在有效治理低氧的同时,不会显著增加采空区煤自燃风险。

    Abstract:

    Gas extraction technology, as an effective measure to mitigate oxygen deficiency in upper corners of shallow coal seam working faces, may lead to an increased risk of coal spontaneous combustion due to elevated air leakage in the goaf during its application. Working face 19112 of No.1 mine at China Coal Pingshuo Group Co., Ltd. was taken as the research object. A coupled fluid-solid-chemical mathematical model of the goaf was constructed based on an analysis of the causes of low-oxygen phenomena in the upper corner of the typical shallow coal seam working face. The Computational Fluid Dynamics (CFD) numerical simulation method was employed to analyze the effectiveness of gas extraction at flow rates of 90, 120, 240, and 360 m3/min in mitigating low-oxygen conditions in the upper corner while assessing associated spontaneous combustion risks in the goaf. The findings indicated that: ① the low-oxygen phenomenon in the upper corner primarily resulted from multiple factors, such as the coal seam location within the CO2-N2 zone with downward migration of inert gases, low-temperature oxidation of residual coal in the goaf, formation of interconnected fracture channels between the goaf and the surface, and the U-shaped negative pressure ventilation method in the working face. ② When the gas extraction flow rate reached 360 m3/min, the O2 volume fraction in the upper corner region significantly rose, effectively controlling the hypoxic conditions. ③ A quadratic function relationship was identified between the width of the low-oxygen zone and gas extraction flow rate. ④ Although installing extraction ventilators in the upper corner for gas extraction may moderately increase the width of the oxidation zone in the goaf, its maximum width (53.8 m) remained far below the theoretical safety threshold (604.8 m), suggesting that gas extraction technology effectively mitigated low-oxygen conditions without significantly increasing coal spontaneous combustion risks.

  • 图  1   上隅角附近区域气体组分变化

    Figure  1.   Variation of gas components near upper corner

    图  2   CFD几何模型与网格划分

    Figure  2.   CFD geometric model and mesh generation

    图  3   数值模拟与现场测试结果对比

    Figure  3.   Comparison between numerical simulation and on-site testing results

    图  4   上隅角附近区域O2浓度分布

    Figure  4.   O2 concentration distribution near upper corner area

    图  5   上隅角O2浓度分布云图

    Figure  5.   Contour plot of O2 concentration distribution in upper corner

    图  6   上隅角附近区域O2浓度分布切片云图

    Figure  6.   Sliced contour plots of O2 concentration distribution near upper corner

    图  7   上隅角低氧范围宽度随气体抽排流量变化特征

    Figure  7.   Variation of width of low-oxygen area in upper corner with gas extraction flow rate

    图  8   采空区整体O2浓度分布云图

    Figure  8.   Overall contour plot of O2 concentration distribution in goaf

    图  9   不同气体抽排流量下采空区氧化带宽度

    Figure  9.   Width of oxidation zone in goaf under different gas extraction flow rates

    表  1   数值模拟参数

    Table  1   Numerical simulation parameters

    参数参数
    Kp,max1.25b1−10
    Kp,min1.1b20
    m0/(kg·s−10.033 3mc/(kg·s−10.133 4
    A/s−19 590mn/(kg·s−11.5
    $ j $0.61dp/m0.15
    T/K293.15
    下载: 导出CSV

    表  2   采空区氧化带最大宽度确定关键点位置信息

    Table  2   Key point location information for determining maximum width of oxidation zone in goaf

    上隅角抽排
    流量/(m3·min−1
    坐标/m关键点
    M1M2P1P2P3
    0X−75.5−112.031.0−61.5−86.5
    Y143.5143.508.35.1
    90X−70.2143.510.5−56.3−109.0
    Y143.5−124.008.74.2
    120X−75.8−121.510.2−54.8−94.8
    Y143. 5143.507.83.8
    240X240.0143. 53.8−61.2−92.6
    Y−76.2−123.808.05.0
    360X−80.0−124.00−61.4−104.0
    Y143.5143.507.84.1
    下载: 导出CSV
  • [1] 袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学,2023,25(5):103-110. DOI: 10.15302/J-SSCAE-2023.05.009

    YUAN Liang. Strategic conception of carbon neutralization in coal industry[J]. Strategic Study of CAE,2023,25(5):103-110. DOI: 10.15302/J-SSCAE-2023.05.009

    [2] 张超林,王培仲,王恩元,等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探,2023,51(2):59-94. DOI: 10.12363/issn.1001-1986.23.02.0054

    ZHANG Chaolin,WANG Peizhong,WANG Enyuan,et al. Coal and gas outburst mechanism:research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration,2023,51(2):59-94. DOI: 10.12363/issn.1001-1986.23.02.0054

    [3] 金永飞,冯异,刘荫,等. 回采工作面上隅角低氧现象成因及防治技术[J]. 煤炭技术,2022,41(3):108-111.

    JIN Yongfei,FENG Yi,LIU Yin,et al. Cause of low oxygen phenomenon in upper corner of working face and its prevention technology[J]. Coal Technology,2022,41(3):108-111.

    [4] 汪腾蛟,裴艳宇,张立辉,等. 补连塔矿工作面低氧主控原因分析[J]. 辽宁工程技术大学学报(自然科学版),2021,40(5):396-400.

    WANG Tengjiao,PEI Yanyu,ZHANG Lihui,et al. Analysis on main control cause of low oxygen in Bulianta Mine[J]. Journal of Liaoning Technical University (Natural Science),2021,40(5):396-400.

    [5] 张岱岳,艾子博,李鹏. 浅埋煤层开采采空区漏风规律分析及治理研究[J]. 矿业安全与环保,2022,49(6):1-6,33.

    ZHANG Daiyue,AI Zibo,LI Peng. Analysis and governance of air leakage law in goaf of shallow coal seam mining[J]. Mining Safety & Environmental Protection,2022,49(6):1-6,33.

    [6] 秦清河,韩文杰. 7 m大采高综采工作面低氧抽放技术研究与应用[J]. 中国煤炭,2023,49(1):30-34. DOI: 10.3969/j.issn.1006-530X.2023.01.004

    QIN Qinghe,HAN Wenjie. Research and application of low-oxygen gas drainage technology in fully mechanized mining face with 7 m mining height[J]. China Coal,2023,49(1):30-34. DOI: 10.3969/j.issn.1006-530X.2023.01.004

    [7] 赵粟. 局部正压方法抑制煤矿釆面低氧的机理和方法研究[D]. 徐州:中国矿业大学,2022.

    ZHAO Su. Study on the mechanism and method of local positive pressure method to suppress hypoxia in coal mine face[D]. Xuzhou:China University of Mining and Technology,2022.

    [8] 苗宇岐,李琨,辛毅,等. 浅埋煤层工作面上隅角低氧隐患形成规律及防治技术[J]. 煤炭与化工,2023,46(10):127-131,136.

    MIAO Yuqi,LI Kun,XIN Yi,et al. Formation law and prevention technology of low oxygen hidden danger in upper corner of shallow coal seam working face[J]. Coal and Chemical Industry,2023,46(10):127-131,136.

    [9]

    CHEN Hui,SHAO Hao,JIANG Shuguang,et al. Study on the cause of hypoxia in the corner of return air of shallow buried flammable coal seam group mining face and the coordinated prevention and control of coal spontaneous combustion[J]. Applied Sciences,2023,13(13). DOI: 10.3390/app13137396.

    [10]

    FAN Chaojun,SUN Hao,YANG Lei,et al. Simulation on harmful gas control by balanced pressure ventilation in the fully mechanized caving face under sealed fire area of small coal mine[J]. ACS Omega,2024,9(14):16168-16175. DOI: 10.1021/acsomega.3c10149

    [11] 潘荣锟,刘伟,李怀珍,等. 浅埋近距离煤层群工作面上隅角贫氧致因及综防技术[J]. 煤炭科学技术,2021,49(2):102-108.

    PAN Rongkun,LIU Wei,LI Huaizhen,et al. Causes of oxygen deficiency in upper corners of working face in shallow-buried and contiguous seams and comprehensive prevention technology[J]. Coal Science and Technology,2021,49(2):102-108.

    [12] 王德明. 矿井通风与安全[M]. 徐州:中国矿业大学出版社,2007.

    WANG Deming. Mine ventilation and safety[M]. Xuzhou:China University of Mining and Technology Press,2007.

    [13] 秦波涛. 矿井火灾防治[M]. 徐州:中国矿业大学出版社,2023.

    QIN Botao. Mine fire prevention and control[M]. Xuzhou:China University of Mining and Technology Press,2023.

    [14] 刘云秋. 神东矿区采煤工作面低氧原因及防控技术研究[J]. 中国煤炭,2023,49(增刊2):66-72.

    LIU Yunqiu. Study on the causes and control technology of low oxygen in coal mining face of Shendong mining area[J]. China Coal,2023,49(S2):66-72.

    [15] 胡寅. 平朔井工一矿动压巷道变孔径钻孔卸压技术研究[D]. 徐州:中国矿业大学,2022.

    HU Yin. Research on pressure relief technology of variable aperture drilling in dynamic pressure roadway of pingshuo No. 1 mine[D]. Xuzhou:China University of Mining and Technology,2022.

    [16] GB 8958—2006 缺氧危险作业安全规程[S].

    GB 8958-2006 Safety regulations for working under hazardous condition of the oxygen deficiency[S].

    [17] 李磊,卢守青,褚廷湘,等. 承压破碎煤体应变和孔渗演化机制与模型研究[J]. 煤田地质与勘探,2024,52(5):37-45. DOI: 10.12363/issn.1001-1986.23.11.0743

    LI Lei,LU Shouqing,CHU Tingxiang,et al. Evolutionary mechanisms and models of strain,porosity,and permeability of compacted broken coals[J]. Coal Geology & Exploration,2024,52(5):37-45. DOI: 10.12363/issn.1001-1986.23.11.0743

    [18] 李宗翔,衣刚,武建国,等. 基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J]. 煤炭学报,2012,37(3):484-489.

    LI Zongxiang,YI Gang,WU Jianguo,et al. Study on spontaneous combustion distribution of goaf based on the "O" type risked falling and non-uniform oxygen[J]. Journal of China Coal Society,2012,37(3):484-489.

    [19] 夏同强. 瓦斯与煤自燃多场耦合致灾机理研究[D]. 徐州:中国矿业大学,2015.

    XIA Tongqiang. Multi-physics coupling mechanism of co-existence hazards for coal spontaneous combustion and gas[D]. Xuzhou:China University of Mining and Technology,2015.

    [20] 李磊. 低变质煤CO产生机理及采空区煤自燃早期预警研究[D]. 徐州:中国矿业大学,2023.

    LI Lei. Mechanism of CO generation from low metamorphic coal and early warning study on spontaneous combustion in goaf[D]. Xuzhou:China University of Mining and Technology,2023.

    [21]

    ZHANG Jian,AN Jingyu,WEN Zhihui,et al. Numerical investigation of coal self-heating in longwall goaf considering airflow leakage from mining induced crack[J]. Process Safety and Environmental Protection,2020,134:353-370. DOI: 10.1016/j.psep.2019.12.025

图(9)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 修回日期:  2025-05-28
  • 网络出版日期:  2025-06-05
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回