矿用电机车混合储能系统功率分配控制

尹昊, 祝龙记

尹昊,祝龙记. 矿用电机车混合储能系统功率分配控制[J]. 工矿自动化,2025,51(5):114-119, 154. DOI: 10.13272/j.issn.1671-251x.2025030086
引用本文: 尹昊,祝龙记. 矿用电机车混合储能系统功率分配控制[J]. 工矿自动化,2025,51(5):114-119, 154. DOI: 10.13272/j.issn.1671-251x.2025030086
YIN Hao, ZHU Longji. Power distribution control of hybrid energy storage system for mining electric locomotives[J]. Journal of Mine Automation,2025,51(5):114-119, 154. DOI: 10.13272/j.issn.1671-251x.2025030086
Citation: YIN Hao, ZHU Longji. Power distribution control of hybrid energy storage system for mining electric locomotives[J]. Journal of Mine Automation,2025,51(5):114-119, 154. DOI: 10.13272/j.issn.1671-251x.2025030086

矿用电机车混合储能系统功率分配控制

基金项目: 

国家自然科学基金资助项目(U1610120)。

详细信息
    作者简介:

    尹昊(2000—),男,安徽滁州人,硕士研究生,研究方向为电子电力,E-mail:1852834987@qq.com

    通讯作者:

    祝龙记(1964—),男,安徽安庆人,教授,博士研究生导师,主要研究方向为电气自动控制、电力电子及电力传动,E-mail: ljzhu@aust.edu.cn

  • 中图分类号: TD64

Power distribution control of hybrid energy storage system for mining electric locomotives

  • 摘要:

    单一蓄电池供电的矿用电机车存在续航里程不足、充电时间长、重载启动困难等问题,导致运行效率低,难以满足安全性与稳定性要求。提出在矿用电机车上采用铅酸蓄电池与超级电容的混合储能技术,设计了矿用电机车混合储能系统,以满足重载启动时高瞬时功率要求,增加续航时间。针对混合储能系统中储能元件的功率分配问题,通过仿真分析低通滤波与小波分解的优缺点,设计了低通滤波与小波分解相结合的功率分解方法,从矿用电机车总负载功率中分解出高低频分量;再根据储能元件的荷电状态(SOC),引入动态协调机制,对储能元件功率分配进行二次调控,得到蓄电池和超级电容的目标功率。仿真结果表明:应用组合分解方法得到的矿用电机车总负载功率的低频分量与原始功率的吻合度较高,瞬态响应性能优越;基于SOC的二次调控策略可动态调整混合储能系统的功率分配,减少了超级电容放电次数,增加了超级电容有效放电时间,使蓄电池稳定放电。

    Abstract:

    Mining electric locomotives powered by a single battery face issues such as insufficient driving range, long charging times, and difficulty starting under heavy load, resulting in low operational efficiency and failing to meet safety and stability requirements. This paper proposed the use of hybrid energy storage technology combining lead-acid batteries and supercapacitors on mining electric locomotives and designed a hybrid energy storage system to meet the high instantaneous power demands during heavy load starts and to extend the driving range. To address the power distribution problem of energy storage components in the hybrid system, a power decomposition method combining low-pass filtering and wavelet decomposition was designed after simulation analysis of their respective advantages and disadvantages. This method decomposed the total load power of the mining electric locomotive into high- and low-frequency components. Then, based on the State of Charge (SOC) of the energy storage components, a dynamic coordination mechanism was introduced for secondary adjustment of power distribution, obtaining the target power for the battery and supercapacitor. Simulation results showed that the low-frequency component of the total load power obtained by the combined decomposition method closely matched the original power, demonstrating superior transient response performance. The SOC-based secondary adjustment strategy could dynamically regulate power distribution in the hybrid energy storage system, reducing the discharge frequency of the supercapacitor, extending its effective discharge time, and stabilizing battery discharge.

  • 图  1   矿用电机车混合储能系统结构

    Figure  1.   Structure of hybrid energy storage system for mining electric locomotives

    图  2   矿用电机车混合储能系统功率分配控制原理

    Figure  2.   Power distribution control principle for hybrid energy storage system in mining electric locomotives

    图  3   负载功率低通滤波结果

    Figure  3.   Load power low-pass filtering result

    图  4   负载功率小波分解原理

    Figure  4.   Principle of wavelet decomposition for load power

    图  5   负载功率小波分解结果

    Figure  5.   Wavelet decomposition results of load power

    图  6   负载功率组合分解结果

    Figure  6.   Combined decomposition results of load power

    图  7   3种负载功率分解方法的运算时间对比

    Figure  7.   Comparison of computation time for three load power decomposition methods

    图  8   电动机给定转矩与功率曲线

    Figure  8.   Torque and power curves of the specified motor

    图  9   电动机负载功率分解结果

    Figure  9.   Decomposition results of motor load power

    图  10   常规工况下储能元件SOC变化曲线

    Figure  10.   SOC variation curves of energy storage components under normal operating conditions

    图  11   超级电容低电量工况下储能元件SOC变化曲线

    Figure  11.   SOC variation curves of energy storage components under low power conditions of supercapacitors

    图  12   蓄电池低电量工况下储能元件SOC变化曲线

    Figure  12.   SOC variation curves of energy storage components under low battery power conditions

    表  1   混合储能系统功率分配二次调控策略

    Table  1   Secondary regulation strategy for power allocation in hybrid energy storage systems

    工况 Cbat Csc 功率分配模式 关键操作
    常规工况 ≥20% ≥20% 协同供电 蓄电池提供低频功率,
    超级电容补偿波动
    超级电容
    低电量
    ≥20% <20% 蓄电池单独供
    电+超级电容充电
    蓄电池全功率输出,
    同时为超级电容充电
    蓄电池
    低电量
    <20% ≥20% 协同供电 蓄电池提供低频功率,
    超级电容补偿波动
    极端低电量 <20% <20% 系统强制保护 限制车辆动力性能,
    优先维持基础行驶
    下载: 导出CSV

    表  2   仿真参数设置

    Table  2   Experimental system parameter setting

    参数 参数
    电动机功率/kW 3 超级电容额定电压/V 96
    直流母线电压/V 220 IGBT电压/V 600
    蓄电池额定电压/V 220 IGBT电流/A 150
    超级电容容量/F 190
    下载: 导出CSV
  • [1] 杨金鑫,祝龙记. 矿用电机车车载充电系统研究[J]. 工矿自动化,2019,45(1):104-108.

    YANG Jinxin,ZHU Longji. Research on on-board charging system of mine-used electric locomotive[J]. Industry and Mine Automation,2019,45(1):104-108.

    [2] 李勇,杨珏,刘如成,等. 大型电动轮矿车节能及零排放技术路线[J]. 煤炭学报,2022,47(5):2120-2130.

    LI Yong,YANG Jue,LIU Rucheng,et al. Technical route of energy saving and zero-emission for large-scale electric mining truck[J]. Journal of China Coal Society,2022,47(5):2120-2130.

    [3] 汪心蕊. 矿用电机车蓄电池/超级电容混合储能系统[D]. 淮南:安徽理工大学,2021.

    WANG Xinrui. Battery/super capacitor hybrid energy storage system for mining electric locomotive[D]. Huainan:Anhui University of Science and Technolog,2021.

    [4] 吴震,陈靖,党娇. 矿用电动车混合储能系统Z源逆变器电流控制[J]. 工矿自动化,2019,45(9):92-98.

    WU Zhen,CHEN Jing,DANG Jiao. Current control of Z-source inverter for hybrid energy storage system of mine-used electric vehicle[J]. Industry and Mine Automation,2019,45(9):92-98.

    [5] 冯高明,周庆凯,谭兴国. 矿用电机车双电机同步控制方法研究[J]. 河南理工大学学报(自然科学版),2025,44(2):128-137.

    FENG Gaoming,ZHOU Qingkai,TAN Xingguo. Research on dual motor synchronous control method for mining electric locomotive[J]. Journal of Henan Polytechnic University(Natural Science),2025,44(2):128-137.

    [6] 申永鹏,孙建彬,王延峰,等. 电动汽车混合储能装置小波功率分流方法[J]. 中国电机工程学报,2021,41(13):4636-4646.

    SHEN Yongpeng,SUN Jianbin,WANG Yanfeng,et al. Power distribution method of wavelet for hybrid energy storage systems in an electric vehicle[J]. Proceedings of the CSEE,2021,41(13):4636-4646.

    [7] 郝明锐. 矿用防爆电驱车辆动力电池技术研究[J]. 煤炭工程,2019,51(10):131-134.

    HAO Mingrui. Research on power battery technology of explosion-proof electric vehicle[J]. Coal Engineering,2019,51(10):131-134.

    [8] 齐洪峰. 飞轮储能与轨道交通系统技术融合发展现状[J]. 电源技术,2022,46(2):137-140. DOI: 10.3969/j.issn.1002-087X.2022.02.008

    QI Hongfeng. Progress of technology integration between flywheel energy storage and rail transportation system[J]. Chinese Journal of Power Sources,2022,46(2):137-140. DOI: 10.3969/j.issn.1002-087X.2022.02.008

    [9]

    YANAMANDRA K,PINISETTY D,DAOUD A,et al. Recycling of Li-ion and lead acid batteries:a review[J]. Journal of the Indian Institute of Science,2022,102(1):281-295. DOI: 10.1007/s41745-021-00269-7

    [10]

    VENERI O,CAPASSO C,PATALANO S. Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles[J]. Applied Energy,2018,227:312-323. DOI: 10.1016/j.apenergy.2017.08.086

    [11] 陈燕东,刘燕军,张松,等. 基于多目标协调的混合储能功率自适应分配方法[J]. 湖南大学学报(自然科学版),2024,51(2):1-11.

    CHEN Yandong,LIU Yanjun,ZHANG Song,et al. Adaptive power allocation strategy for hybrid energy storage based on multi-objective coordination[J]. Journal of Hunan University (Natural Sciences),2024,51(2):1-11.

    [12] 王力,胡佳成,曾祥君,等. 基于混合储能的交直流混联微电网功率分级协调控制策略[J]. 电工技术学报,2024,39(8):2311-2324.

    WANG Li,HU Jiacheng,ZENG Xiangjun,et al. Hierarchical coordinated power control strategy for AC-DC hybrid microgrid with hybrid energy storage[J]. Transactions of China Electrotechnical Society,2024,39(8):2311-2324.

    [13] 李红,储江伟,孙术发,等. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术,2021,10(5):1687-1693.

    LI Hong,CHU Jiangwei,SUN Shufa,et al. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system[J]. Energy Storage Science and Technology,2021,10(5):1687-1693.

    [14] 高锋阳,张浩然,王文祥,等. 氢燃料电池有轨电车混合储能系统的节能运行优化[J]. 电工技术学报,2022,37(3):686-696.

    GAO Fengyang,ZHANG Haoran,WANG Wenxiang,et al. Energy saving operation optimization of hybrid energy storage system for hydrogen fuel cell tram[J]. Transactions of China Electrotechnical Society,2022,37(3):686-696.

    [15] 赵永熹,刘剑,周建萍,等. 基于稳态功率修正的混合储能新型控制策略研究[J]. 可再生能源,2021,39(5):666-672.

    ZHAO Yongxi,LIU Jian,ZHOU Jianping,et al. Research on new control strategy of hybrid energy storage sources based on steady-state power correction[J]. Renewable Energy Resources,2021,39(5):666-672.

    [16] 陈景文,周婧,张文倩. 基于小波包−模糊算法的混合储能功率分配策略[J]. 智慧电力,2023,51(1):61-68.

    CHEN Jingwen,ZHOU Jing,ZHANG Wenqian. Hybrid energy storage power allocation strategy based on wavelet packet-fuzzy algorithm[J]. Smart Power,2023,51(1):61-68.

    [17] 贾伟青,任永峰,薛宇,等. 基于小波包−模糊控制的混合储能平抑大型风电场功率波动[J]. 太阳能学报,2021,42(9):357-363.

    JIA Weiqing,REN Yongfeng,XUE Yu,et al. Wavelet packet-fuzzy control of hybrid energy storage for power fluctuation smoothing of large wind farm[J]. Acta Energiae Solaris Sinica,2021,42(9):357-363.

    [18] 赵靖英,乔珩埔,姚帅亮,等. 考虑储能SOC自恢复的风电波动平抑混合储能容量配置策略[J]. 电工技术学报,2024,39(16):5206-5219.

    ZHAO Jingying,QIAO Hengpu,YAO Shuailiang,et al. Hybrid energy storage system capacity configuration strategy for stabilizing wind power fluctuation considering SOC self-recovery[J]. Transactions of China Electrotechnical Society,2024,39(16):5206-5219.

    [19] 肖谧,宿玉鹏,杜伯学. 超级电容器研究进展[J]. 电子元件与材料,2019,38(9):1-12.

    XIAO Mi,SU Yupeng,DU Boxue. Research progress of supercapacitors[J]. Electronic Components and Materials,2019,38(9):1-12.

    [20] 乔亮波,张晓虎,孙现众,等. 电池−超级电容器混合储能系统研究进展[J]. 储能科学与技术,2022,11(1):98-106.

    QIAO Liangbo,ZHANG Xiaohu,SUN Xianzhong,et al. Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology,2022,11(1):98-106.

    [21] 胡昆民. 基于超级电容矿用电机车混合储能系统的研究[D]. 淮南:安徽理工大学,2020.

    HU Kunmin. Research on hybrid energy storage system of mine electric locomotive based on supercapacitor[D]. Huainan:Anhui University of Science and Technolog,2020.

图(12)  /  表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-05-22
  • 网络出版日期:  2025-06-03
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回