Research on 3D modeling of underground roadways in coal mines
-
摘要:
巷道三维重建是实现矿井探测的重要手段。三维激光扫描结合同时定位与建图(SLAM)技术可实现巷道扫描与三维重建,但在井下几何特征稀疏环境中存在点云配准精度不足、效率不高等问题。以陕西煤业化工集团柠条塔煤矿南翼东区辅运巷道为工程背景,对井下巷道高精度建模展开研究。针对柠条塔煤矿井下环境特点,将测量控制点布置在巷道顶板,减少环境因素对控制点位置的干扰;采用GOSLAM−GSJH12手持式三维激光扫描仪采集点云数据;通过构建已知点约束,根据已知控制点坐标对点云坐标进行非线性优化,实现点云漂移校正;采用小波分解、非局部均值等去噪算法和基于PointNet++的深度学习分割算法去除点云数据中的噪声;基于改进的Harris3D角点检测器和随机样本一致(RANSAC)算法提取巷道点云特征,融合三维激光雷达和惯性测量单元数据进行巷道点云配准,实现高精度地图构建;采用Delaunay三角剖分算法构建井下巷道的不规则三角网模型,再通过多阶段优化实现三维模型精细化重建,最终通过可视化平台展示。研究成果可与物联网、大数据、人工智能等技术结合,实现矿井智能化管理和决策。
Abstract:3D reconstruction of underground roadways is an important approach for mine surveying. 3D laser scanning combined with Simultaneous Localization and Mapping (SLAM) technology enables roadway scanning and 3D reconstruction. However, in underground environments with sparse geometric features, there exist problems such as insufficient point cloud registration accuracy and low efficiency. Taking the auxiliary haulage roadway in the southeastern section of the south wing of Ningtiaota Coal Mine under Shaanxi Coal and Chemical Industry Group as the engineering background, this study conducted high-precision modeling of underground roadways. Considering the characteristics of the underground environment of Ningtiaota Coal Mine, control points were arranged on the roadway roof to reduce environmental interference on their positions. A GOSLAM-GSJH12 handheld 3D laser scanner was used to collect point cloud data. By constructing known point constraints and performing nonlinear optimization on the point cloud coordinates based on the known control point coordinates, point cloud drift was corrected. Denoising algorithms such as Wavelet Decomposition and Non-Local Means, along with the deep learning segmentation algorithm based on PointNet++, were applied to remove noise in the point cloud data. Roadway point cloud features were extracted using an improved Harris3D corner detector and the Random Sample Consensus (RANSAC) algorithm. Point cloud registration was performed by fusing data from 3D LiDAR and the Inertial Measurement Unit (IMU), enabling high-precision map construction. The Delaunay Triangulation algorithm was adopted to construct an irregular triangular mesh model of the underground roadway, and multi-stage optimization was used to achieve fine 3D reconstruction, which was finally presented via a visualization platform. The research results can be integrated with technologies such as the Internet of Things, big data, and artificial intelligence to realize intelligent mine management and decision-making.
-
-
表 1 采用不同点云漂移校正算法时区域样本误差统计
Table 1 Error statistics of regional samples under different point cloud drift correction algorithms
编号 实际值/m Lego−LOAM LIO−SAM 已知点约束 测量值/m 绝对误差/m 相对误差/% 测量值/m 绝对误差/m 相对误差/% 测量值/m 绝对误差/m 相对误差/% 1 4.600 4.356 0.244 5.30 4.562 0.038 0.83 4.582 0.018 0.39 2 2.000 1.916 0.084 4.20 1.986 0.014 0.70 1.991 0.009 0.45 3 0.600 0.585 0.015 2.50 0.595 0.005 0.83 0.595 0.005 0.83 4 3.500 3.663 0.163 4.66 3.533 0.033 0.94 3.487 0.013 0.37 5 0.900 0.923 0.023 2.56 0.862 0.038 4.22 0.893 0.007 0.78 6 1.500 1.482 0.018 1.20 1.490 0.01 0.67 1.493 0.007 0.47 -
[1] WANG Yang. Twenty years of development and future prospects of coal beneficiation in China[J]. Frontiers in Power and Energy Systems,2024,3(1). DOI: 10.23977/FPES.2024.030109.
[2] 邓军,王津睿,任帅京,等. 声波探测技术在矿井领域中的应用及展望[J]. 煤田地质与勘探,2023,51(6):149-162. DOI: 10.12363/issn.1001-1986.22.11.0903 DENG Jun,WANG Jinrui,REN Shuaijing,et al. Application and prospect of acoustic detection in the mining sector[J]. Coal Geology & Exploration,2023,51(6):149-162. DOI: 10.12363/issn.1001-1986.22.11.0903
[3] BI Fengyi,YU Ping,JIAO Jian,et al. An adaptive modeling-based aeromagnetic maneuver noise suppression method and its application in mine detection[J]. Remote Sensing,2023,15(18). DOI: 10.3390/RS15184590.
[4] YANG Lin,MA Hongwei,NIE Zhen,et al. 3D LiDAR point cloud registration based on IMU preintegration in coal mine roadways[J]. Sensors,2023,23(7). DOI: 10.3390/S23073473.
[5] 孙伟. 巷道测量方法对煤矿安全生产的影响分析[J]. 内蒙古煤炭经济,2025(3):108-110. DOI: 10.3969/j.issn.1008-0155.2025.03.037 SUN Wei. Analysis of the impact of roadway surveying methods on coal mine safety production[J]. Inner Mongolia Coal Economy,2025(3):108-110. DOI: 10.3969/j.issn.1008-0155.2025.03.037
[6] 刘杰,连增增,何荣,等. 基于近景摄影测量技术的地下巷道三维建模[J]. 金属矿山,2020(9):179-183. LIU Jie,LIAN Zengzeng,HE Rong,et al. 3D modeling of underground tunnel based on close range photogrammetry technique[J]. Metal Mine,2020(9):179-183.
[7] GURGEL M J M,PREUSSE A. New opportunities and challenges in surveying underground cavities using photogrammetric methods[J]. International Journal of Mining Science and Technology,2021,31(1):9-13. DOI: 10.1016/j.ijmst.2020.12.005
[8] 张中豪. 煤矿井下全站仪定位与设备姿态角测量技术分析[J]. 机械管理开发,2024,39(7):290-292. ZHANG Zhonghao. Analysis of total station positioning and equipment attitude angle measurement technology in underground coal mine[J]. Mechanical Management and Development,2024,39(7):290-292.
[9] 彭超,臧洪源. 某矿山地下空间三维激光扫描建模技术及可视化研究[J]. 矿业工程,2024,22(4):88-92. PENG Chao,ZANG Hongyuan. Research on three-dimensional laser scanning,modeling technology and visualization of underground space in a mine[J]. Mining Engineering,2024,22(4):88-92.
[10] 张亚,山锋,王涛. 三维激光扫描技术点云数据采集与配准研究[J]. 地理空间信息,2021,19(3):24-27,6. DOI: 10.3969/j.issn.1672-4623.2021.03.007 ZHANG Ya,SHAN Feng,WANG Tao. Research on point cloud data acquisition and rectification of 3D laser scanning technology[J]. Geospatial Information,2021,19(3):24-27,6. DOI: 10.3969/j.issn.1672-4623.2021.03.007
[11] 蔺小虎,杨鑫,姚顽强,等. 面向复杂地下空间的多源传感器数据动态加权融合SLAM方法[J]. 测绘学报,2025,54(3):523-535. LIN Xiaohu,YANG Xin,YAO Wanqiang,et al. A dynamic weighted fusion SLAM method using multi-source sensor data in complex underground spaces[J]. Acta Geodaetica et Cartographica Sinica,2025,54(3):523-535.
[12] 胡青松,李敬雯,张元生,等. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术[J]. 工矿自动化,2024,50(10):21-28. HU Qingsong,LI Jingwen,ZHANG Yuansheng,et al. IMU-LiDAR integrated SLAM technology for unmanned driving in mines[J]. Journal of Mine Automation,2024,50(10):21-28.
[13] 刘敬东,李旭,于凤启,等. 激光SLAM技术在巷道精细建模的应用研究[J]. 煤矿机械,2024,45(10):199-202. LIU Jingdong,LI Xu,YU Fengqi,et al. Research on application of laser SLAM technology in fine modeling of roadway[J]. Coal Mine Machinery,2024,45(10):199-202.
[14] 朱珍,何满潮,王琦,等. 柠条塔煤矿自动成巷无煤柱开采新方法[J]. 中国矿业大学学报,2019,48(1):46-53. ZHU Zhen,HE Manchao,WANG Qi,et al. An innovative non-pillar mining method for gateroad formation automatically and its application in Ningtiaota Coal Mine[J]. Journal of China University of Mining & Technology,2019,48(1):46-53.
[15] 李智勇. 导线近似平差计算[J]. 全球定位系统,2014,39(3):97-99. LI Zhiyong. Approximate adjustment calculation of the traverse[J]. GNSS World of China,2014,39(3):97-99.
[16] 邱俊玲. 基于三维激光扫描技术的矿山地质建模与应用研究[D]. 武汉:中国地质大学,2012. QIU Junling. Mine geological modeling and application based on the three-dimensional laser scanner technology[D]. Wuhan:China University of Geosciences,2012.
[17] 潘廷凤,王楠,王卫东. 三维激光扫描技术在矿山地质测量中的应用研究[J]. 黑龙江环境通报,2024,37(6):151-153. PAN Tingfeng,WANG Nan,WANG Weidong. Research on the application of 3D laser scanning technology in mine geological survey[J]. Heilongjiang Environmental Journal,2024,37(6):151-153.
[18] 华宇宁,刘永俊. 基于Harris3D关键点提取和RANSAC算法的改进ICP算法研究[J]. 电子世界,2021(24):73-74. DOI: 10.12043/j.issn.1003-0522.2021.24.dzsj202124037 HUA Yuning,LIU Yongjun. Research on improved ICP algorithm based on Harris3D key point extraction and RANSAC algorithm[J]. Electronics World,2021(24):73-74. DOI: 10.12043/j.issn.1003-0522.2021.24.dzsj202124037
[19] CHEN Min,YAN Weishan,FENG Yuan,et al. Large-scale underground mine positioning and mapping with LiDAR-based semantic intersection detection[J]. Mining,Metallurgy & Exploration,2023,40(5):2007-2021.
[20] 冀晓伟,卢才武,李海波. 三维矿体表面建模中的三角剖分技术及其应用[J]. 金属矿山,2011(2):106-110,114. JI Xiaowei,LU Caiwu,LI Haibo. Triangulation technique and its application in 3D ore body surface modeling[J]. Metal Mine,2011(2):106-110,114.
[21] 刘翔宇,王健,常清法,等. 改进贪婪投影三角化算法的激光点云快速三维重建[J]. 激光与红外,2022,52(5):763-770. DOI: 10.3969/j.issn.1001-5078.2022.05.023 LIU Xiangyu,WANG Jian,CHANG Qingfa,et al. Fast 3D reconstruction of point cloud based on improved greedy projection triangulation algorithm[J]. Laser & Infrared,2022,52(5):763-770. DOI: 10.3969/j.issn.1001-5078.2022.05.023
[22] SONG Yuanlong,LI Ming,LIU Xiaojia. A paralleled delaunay triangulation algorithm for processing large LIDAR points[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences,2022,X3W1:141-146.
-
期刊类型引用(41)
1. 李旭,杨位,史云,李杰,董博. 基于千眼智能分析系统的综采设备联动控制方法. 煤矿安全. 2025(01): 237-243 . 百度学术
2. 王鹏. 煤矿安全监控系统智能化现状及发展. 能源与节能. 2023(02): 153-155 . 百度学术
3. 赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究. 工矿自动化. 2023(02): 38-46 . 本站查看
4. 孙霞,刘顺,赵厚群. 基于ZigBee与谓词Petri网的煤矿安全预警系统设计. 煤矿机械. 2023(08): 187-190 . 百度学术
5. 牛嘉. 煤矿安全监控系统智能化现状及发展. 能源与节能. 2022(01): 138-139 . 百度学术
6. 吕强. 煤矿安全监控系统升级改造及关键性技术质量研究. 中国石油和化工标准与质量. 2022(03): 177-179 . 百度学术
7. 李敏. 煤矿安全监控系统现状及智能化发展研究. 中国新通信. 2022(02): 121-122 . 百度学术
8. 王鑫,李士晓. 井下自动巡检机器人控制系统设计研究. 煤炭技术. 2022(04): 209-211 . 百度学术
9. 段海亮,吴海旭. 煤矿安全监控系统现场运行维护. 陕西煤炭. 2022(04): 202-205 . 百度学术
10. 李东发,臧燕杰,师吉林. 矿井火灾智能预警系统. 工矿自动化. 2022(S1): 112-115+120 . 本站查看
11. 傅彬. 基于DBN的多传感器数据融合煤矿事故预警系统. 煤炭技术. 2021(04): 133-136 . 百度学术
12. 罗一民,刘振坚,刘冰,邱锦波,庄德玉,张阳. 采煤机可收集微弱环境能量分析. 工矿自动化. 2021(04): 39-43 . 本站查看
13. 陈向飞. 煤矿安全监控系统设备故障分析及维护方法. 煤矿机械. 2021(06): 170-172 . 百度学术
14. 申乾. 红柳林煤矿安全监控系统升级改造及应用. 内蒙古煤炭经济. 2021(04): 79-81 . 百度学术
15. 刘媛媛. 煤矿安全监控系统技术现状及智能化发展趋势. 矿业安全与环保. 2021(04): 104-108 . 百度学术
16. 王国新,王珂硕. 基于注意力机制的煤矿井下行人检测的轻量化网络结构. 黑龙江科技大学学报. 2021(06): 824-829 . 百度学术
17. 黄伟,陈瑶,华月存,孙超. 煤矿安全监控系统层级故障自诊断技术. 煤矿安全. 2021(12): 133-137 . 百度学术
18. 刘伟. 煤矿安全监控系统现状分析及技术升级改造——以杭锦旗塔然高勒煤矿为例. 冶金管理. 2020(07): 78-79 . 百度学术
19. 陈向飞. 矿用传感器启动电流抑制的设计与实现. 能源技术与管理. 2020(03): 20-22 . 百度学术
20. 王海波. 大采高综采工作面环境安全智能化监测. 工矿自动化. 2020(07): 12-15 . 本站查看
21. 李明建,赵旭生,谈国文,宋志强,廖成. 区域煤矿瓦斯灾害风险预警数据采集技术研究. 工矿自动化. 2020(07): 57-63 . 本站查看
22. 侯威宇. 煤矿安全监控系统联网技术研究. 科技创新与应用. 2020(31): 162-163 . 百度学术
23. 孟建. 分布式全融合KJ335X煤矿安全监控系统. 信息化研究. 2020(04): 67-72 . 百度学术
24. 袁凤培. 煤矿多层异构网络远程固件更新方法. 工矿自动化. 2020(12): 101-105 . 本站查看
25. 屈世甲,武福生. 基于边缘计算的采煤工作面甲烷监测模式研究. 煤炭科学技术. 2020(12): 161-167 . 百度学术
26. 张春坡. 准格尔大型露天煤矿综合监控联网设计. 煤炭工程. 2020(S2): 23-27 . 百度学术
27. 高文. 煤矿监控类系统远程故障分析平台. 工矿自动化. 2019(02): 105-108 . 本站查看
28. 王其轩,陈北辰. 基于CAN总线的煤矿安全监控系统设计. 煤炭工程. 2019(03): 28-32 . 百度学术
29. 李文峰,白慧. 博克斯-詹金斯模型在煤矿顶板安全监测中的应用分析. 电子器件. 2019(03): 802-805 . 百度学术
30. 牛耘. 瓦斯抽采监控系统传感器故障诊断. 电子技术与软件工程. 2019(12): 230 . 百度学术
31. 张义伟,李孟娇,刘宝元. 基于STM32和GSM的煤矿瓦斯报警系统的设计. 煤炭技术. 2019(06): 130-132 . 百度学术
32. 陈汉章,汪洋. 基于GIS的煤矿安全监控系统应急联动子系统的设计与实现. 矿业研究与开发. 2019(07): 121-125 . 百度学术
33. 王凤斌,孟祥忠,刘文峰. 煤矿轨道运输矿车与机车协同调度优化问题研究. 工业仪表与自动化装置. 2019(04): 126-130 . 百度学术
34. 赵海生. 浅谈智能化图像图形系统在煤矿中枢调度中的作用. 技术与市场. 2019(09): 76-77 . 百度学术
35. 张军胜,李长营. 煤矿安全监控系统智能化现状及发展对策. 电子技术与软件工程. 2019(22): 108-109 . 百度学术
36. 徐丽平,赵亮. 矿用设备开停传感器自学习工作方法. 煤炭与化工. 2019(11): 83-84+89 . 百度学术
37. 王建楹,胡扬超. LoRA和CAN总线的可燃气监测系统设计. 单片机与嵌入式系统应用. 2019(11): 57-59+64 . 百度学术
38. 丁玲玲. 改扩建矿井通风智能化技术研究现状. 世界有色金属. 2018(10): 141-142 . 百度学术
39. 罗虎. 新型煤矿安全避难舱高洁净度供氧伺服阀. 煤炭技术. 2018(09): 330-333 . 百度学术
40. 齐笑笑,郭佑民,齐金平. 一种新型煤矿安全监控数据采集装置设计. 制造业自动化. 2018(11): 60-62+68 . 百度学术
41. 郝俊锁. 基于物联网的瓦斯隧道安全监控系统. 隧道建设(中英文). 2018(S2): 278-284 . 百度学术
其他类型引用(13)