SINS/OD integrated navigation system for shearer based on robust closed-loop path calibration
-
摘要:
基于非完整性约束和闭合路径校准的捷联惯导与里程计的组合导航系统是被广泛应用的采煤机定位方案,其中闭合路径校准法需要能够准确测量液压支架的实际推移距离,但传统的卡尔曼滤波器(KF)难以应对观测量中的异常值,而错误的预测位置会严重影响闭合路径校准法的精度,导致难以有效检测采煤机轨迹直线度。最大相关熵准则卡尔曼滤波器(MCCKF)可获得测量值的高阶统计量,但是MCCKF中的核带宽通常根据经验设定,影响了MCCKF对复杂环境的适用性。针对上述问题,提出了一种基于鲁棒闭合路径校准的采煤机捷联惯性导航系统(SINS)/里程计(OD)组合导航系统。首先,基于采煤机运动约束模型分别建立速度测量误差方程和位置测量误差方程,并建立KF模型完成对采煤机位置的最优估计;然后,采用MCCKF取代传统的KF,降低传统闭合路径校准法中错误的预测位置对直线度检测的干扰;最后,建立具有自适应核带宽算法的MCCKF(AMCCKF),在不预设核带宽参数的情况下即可获得良好的鲁棒性。 实验结果表明:AMCCKF的东向均方根误差(RMSE)为0.192 0 m,比MCCKF(核带宽=1)高2.65%;AMCCKF的北向RMSE为0.049 6 m,比MCCKF(核带宽=1)低30.53%。结合东向和北向误差,AMCCKF的圆概率误差(CEP)为0.142 2 m,较MCCKF(核带宽=1)降低了6.51%。在引入自适应核带宽后,AMCCKF可以达到甚至优于经过多次测试得到的固定核带宽MCCKF的性能,说明基于AMCCKF的组合导航系统具备更好的环境适应性。
Abstract:The Strapdown Inertial Navigation System (SINS) and Odometer (OD) integrated navigation system based on non-holonomic constraints and closed-loop path calibration is a widely used positioning scheme for shearers. In this method, the closed-loop path calibration requires accurate measurement of the actual advancing distance of the hydraulic support. However, traditional Kalman filtering (KF) struggles to handle outliers in the observations, and incorrect predicted positions can significantly reduce the accuracy of the closed-loop calibration, making it difficult to effectively detect the straightness of the shearer’s trajectory. The Maximum Correntropy Criterion Kalman filter (MCCKF) can capture higher-order statistics of the measurements, but the kernel bandwidth in MCCKF is usually empirically set, which limits its applicability in complex environments. To address the above issues, a shearer SINS/OD integrated navigation system based on robust closed-loop path calibration was proposed. First, velocity and position measurement error equations were established based on the shearer's motion constraint model, and a Kalman filter (KF) model was constructed to achieve optimal position estimation. Then, the MCCKF was adopted to replace the traditional KF, reducing the interference caused by erroneous predicted positions in the traditional closed-loop calibration method on straightness detection. Finally, an Adaptive Kernel Bandwidth algorithm was introduced into the MCCKF (AMCCKF), achieving good robustness without pre-setting the kernel bandwidth parameter. Experimental results showed that the eastward root mean square error (RMSE) of AMCCKF was 0.1920 m, which was 2.65% higher than that of MCCKF with a kernel bandwidth of 1. The northward RMSE of AMCCKF was 0.0496 m, 30.53% lower than that of MCCKF (bandwidth = 1). Considering both eastward and northward errors, the Circular Error Probable (CEP) of AMCCKF was 0.1422 m, which was 6.51% lower than that of MCCKF (bandwidth = 1). With the introduction of adaptive kernel bandwidth, the performance of AMCCKF can match or even exceed that of MCCKF with a fixed kernel bandwidth obtained through multiple tests, demonstrating that the AMCCKF-based integrated navigation system has better environmental adaptability.
-
-
表 1 实验中位置均方根误差
Table 1 Position RMSE in the experiment
m 截割次数 校准方案 东向RMSE 北向RMSE CEP 第1次 KF 0.342 3 0.155 9 0.293 3 第2次 KF 0.339 1 0.182 8 0.307 2 第3次 KF 0.464 7 0.825 0 0.759 2 Sage−Husa AKF 0.436 1 0.327 3 0.449 4 MCCKF(σ=3) 0.386 0 0.157 1 0.319 7 MCCKF(σ=1) 0.186 9 0.071 4 0.152 1 AMCCKF 0.192 0 0.049 6 0.142 2 -
[1] 王国法,任怀伟,富佳兴. 煤矿智能化建设高质量发展难题与路径[J]. 煤炭科学技术,2025,53(1):1-18. DOI: 10.12438/cst.2024-0550 WANG Guofa,REN Huaiwei,FU Jiaxing. Challenge and path of high-quality development of coal mine intelligent construction[J]. Coal Science and Technology,2025,53(1):1-18. DOI: 10.12438/cst.2024-0550
[2] 王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893. WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
[3] 尤秀松,葛世荣,郭一楠,等. 智采工作面三机数字孪生驱动控制架构[J]. 煤炭学报,2024,49(7):3265-3275. YOU Xiusong,GE Shirong,GUO Yinan,et al. Digital twin-driven control construction for three machines of smart coal mining face[J]. Journal of China Coal Society,2024,49(7):3265-3275.
[4] 孙岩,付翔,王然风,等. 融合传感器数据和人工调控信息的工作面直线度智能预测[J]. 工矿自动化,2024,50(11):84-91. SUN Yan,FU Xiang,WANG Ranfeng,et al. Intelligent prediction for face straightness based on sensor data and human operation information[J]. Journal of Mine Automation,2024,50(11):84-91.
[5] 钮涛,李鑫超,胥瑜民,等. 基于惯导与里程计组合导航的综采工作面自动找直系统[J]. 煤炭工程,2024,56(增刊1):56-61. NIU Tao,LI Xinchao,XU Yumin,et al. Automatic straightening system for fully mechanized mining face based on integrated navigation of inertial navigation and odometry[J]. Coal Engineering,2024,56(S1):56-61.
[6] 杨波,吴宁. 基于组合惯导的综采工作面刮板输送机直线度检测方法[J]. 煤矿安全,2022,53(6):148-152. YANG Bo,WU Ning. Straightness detection method of scraper conveyor in fully mechanized mining face based on integrated inertial navigation[J]. Safety in Coal Mines,2022,53(6):148-152.
[7] HAN Songlai,REN Xingyu,LU Jiazhen,et al. An orientation navigation approach based on INS and odometer integration for underground unmanned excavating machine[J]. IEEE Transactions on Vehicular Technology,2020,69(10):10772-10786. DOI: 10.1109/TVT.2020.3010979
[8] 曹波,王世博,葛世荣,等. 基于IMU/UWB的井下采煤工作面端头采煤机定位试验研究[J]. 煤炭科学技术,2023,51(6):217-228. CAO Bo,WANG Shibo,GE Shirong,et al. Research on shearer positioning experiment based on IMU and UWB at the end of underground coal mining working face[J]. Coal Science and Technology,2023,51(6):217-228.
[9] 江帆,康静静,皇行涛,等. 基于多编码器与惯导融合的无轨胶轮车定位方法[J]. 煤炭科学技术,2024,52(增刊2):284-293. JIANG Fan,KANG Jingjing,HUANG Xingtao,et al. A positioning method for underground trackless rubber wheel vehicle based on fusion of multiple encoders and strapdown inertial navigation system[J]. Coal Science and Technology,2024,52(S2):284-293.
[10] ZHENG Jiangtao,LI Sihai,LIU Shiming,et al. Research on the shearer positioning method based on SINS and LiDAR with velocity and absolute position constraints[J]. Remote Sensing,2021,13(18). DOI: 10.3390/RS13183708.
[11] 李森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169-174. LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169-174.
[12] DAI Weiwei,WANG Shijia,WANG Shibo. Longwall mining automation—the shearer positioning methods between the longwall automation steering committee and China University of Mining and Technology[J]. Applied Sciences,2023,13(22). DOI: 10.3390/APP132212168.
[13] SONG Danyang,YANG Jinheng,SONG Jiancheng. Shearer-positioning method based on non-holonomic constraints [J]. Applied Sciences,2022,12(19). DOI: 10.3390/APP121910050.
[14] WANG Shibo,ZHANG Boyuan,WANG Shijia,et al. Dynamic precise positioning method of shearer based on closing path optimal estimation model[J]. IEEE Transactions on Automation Science and Engineering,2019,16(3):1468-1475. DOI: 10.1109/TASE.2018.2871758
[15] 王云飞,赵继云,张鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951 WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951
[16] 孙铭泽,王永强,常亚军,等. 液压支护机器人群组移架一致性分布式协同控制[J]. 煤炭学报,2024,49(增刊2):1208-1222. SUN Mingze,WANG Yongqiang,CHANG Yajun,et al. Distributed cooperative control of consistency of hydraulic support robot group moving frame[J]. Journal of China Coal Society,2024,49(S2):1208-1222.
[17] 巫春玲,赵玉冰,马耀,等. 采用改进最大相关熵自适应迭代容积卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 西安交通大学学报,2024,58(11):52-64. DOI: 10.7652/xjtuxb202411005 WU Chunling,ZHAO Yubing,MA Yao,et al. Estimation of lithium-Ion battery state of charge using an innovation maximum correlation-entropy criterion adaptive iterative cubature Kalman filter algorithm[J]. Journal of Xi'an Jiaotong University,2024,58(11):52-64. DOI: 10.7652/xjtuxb202411005
[18] 宋单阳,卢春贵,陶心雅,等. 基于最大熵卡尔曼滤波算法的液压支架调直方法[J]. 工矿自动化,2022,48(11):119-124. SONG Danyang,LU Chungui,TAO Xinya,et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119-124.
[19] 王国庆,张冬生,朱兆磊,等. 基于学生t核的最大相关熵卡尔曼滤波及其核带宽自适应选择方法[J]. 控制与决策,2025,40(5):1541-1550. WANG Guoqing,ZHANG Dongsheng,ZHU Zhaolei,et al. Student's t kernel maximum correntropy Kalman filter and its kernel bandwidth adaptive selection method[J]. Control and Decision,2025,40(5):1541-1550.
[20] WANG Shijia,WANG Shibo. Improving the shearer positioning accuracy using the shearer motion constraints in longwall panels[J]. IEEE Access,2020,8:52466-52474. DOI: 10.1109/ACCESS.2020.2980677
[21] YAN Ming,WANG Zengcai,ZHANG Jie. Online calibration of installation errors of SINS/OD integrated navigation system based on improved NHC[J]. IEEE Sensors Journal,2022,22(13):12602-12612. DOI: 10.1109/JSEN.2022.3170707
[22] LIU Xuhang,LIU Xiaoxiong,YANG Yue,et al. Robustvariational Bayesian method-based SINS/GPS integratedsystem[J]. Measurement, 2022, 193. DOI: 10.1016/J.MEASUREMENT.2022.110893.
-
期刊类型引用(19)
1. 张廷寿. 煤矿综掘巷道负压除尘性能研究. 中国矿业. 2025(04): 241-250 . 百度学术
2. 张京兆,苏慧冬,闫振国,马文杰,熊帅,张宸毓. 综掘工作面气室降尘技术研究. 工矿自动化. 2024(01): 80-87 . 本站查看
3. 韩文杰,张虎,石磊,秦娜. 基于新型分风控尘方法的综掘工作面控尘机制研究. 煤矿安全. 2024(07): 59-67 . 百度学术
4. 邱观华,马帅帅,刘喜亮,朱儒化,张国梁,张世奇,魏涛,李小川. 机械通风参数对半煤岩巷道掘进面粉尘扩散特性的影响. 煤矿机械. 2024(09): 43-46 . 百度学术
5. 王建国,金小菊,韩敏. 气液两相喷雾雾化参数对综掘工作面降尘效果的影响. 矿业研究与开发. 2024(09): 151-157 . 百度学术
6. 司俊鸿,王雨晨,王昊宇,霍小泉,杨云峰. 综掘面动态产尘条件下粉尘扩散运移规律研究. 安全. 2024(10): 33-39 . 百度学术
7. 黄超,唐明云,王乐乐,蔡建国,袁雅楠. 通风扰动下连采工作面截割粉尘运移及分布规律. 工矿自动化. 2024(10): 168-178 . 本站查看
8. 明洁. 综掘工作面长压短抽通风除尘技术探析. 当代化工研究. 2023(14): 114-116 . 百度学术
9. 张建国,孙海良,张国川,王海涛,姜德义,张黄情. 煤巷中不同截割部位对粉尘运移扩散规律的影响研究. 煤炭技术. 2023(08): 177-181 . 百度学术
10. 李硕,史克南,李松,吴江. 抗干扰激光粉尘传感器技术研究. 应用激光. 2023(08): 131-138 . 百度学术
11. 高海,程传兴. 压入式掘进巷道风流粉尘运移规律及最佳压风量研究. 山西煤炭. 2023(03): 54-61 . 百度学术
12. 马胜利,张强,张凯铭. 综掘工作面风幕控尘除尘系统数值模拟研究. 煤炭技术. 2022(02): 87-89 . 百度学术
13. 郭玉峰,郝永江,李云龙,郭伟强. 综放工作面转载破碎粉尘扩散运移规律分析. 煤炭工程. 2022(02): 73-77 . 百度学术
14. 黄正华. 综采面粉尘运移规律与通风降尘方式研究. 煤矿现代化. 2021(02): 104-106+111 . 百度学术
15. 龚晓燕,彭高高,宋涛,冯雄,陈菲,刘辉,谢沛,薛河. 掘进工作面长压短抽通风出风口风流调控参数研究. 工矿自动化. 2021(09): 45-52 . 本站查看
16. 李军胜. 基于Realizable k-ε模型煤巷综掘工作面粉尘运移规律研究. 陕西煤炭. 2021(S2): 6-10 . 百度学术
17. 张运增,苏志伟. 神东矿区综合防尘关键技术及应用. 煤炭科学技术. 2021(S2): 115-119 . 百度学术
18. 杨敏,张全柱,赵紫梅. 高精度矿用粉尘监测系统的数据采集模块设计. 煤炭与化工. 2020(02): 65-68+72 . 百度学术
19. 王凯凯,司文,王江峰. 综掘工作面高效除尘技术研究与应用. 能源与环保. 2020(08): 72-75+80 . 百度学术
其他类型引用(15)