综放工作面端头悬空顶煤水力破煤弱化技术

董昊福, 张玮, 孙广军, 付慧见, 龙昭熹, 刘扬, 刘冬亮, 朱晓东

董昊福,张玮,孙广军,等. 综放工作面端头悬空顶煤水力破煤弱化技术[J]. 工矿自动化,2025,51(5):15-22. DOI: 10.13272/j.issn.1671-251x.2025020050
引用本文: 董昊福,张玮,孙广军,等. 综放工作面端头悬空顶煤水力破煤弱化技术[J]. 工矿自动化,2025,51(5):15-22. DOI: 10.13272/j.issn.1671-251x.2025020050
DONG Haofu, ZHANG Wei, SUN Guangjun, et al. Hydraulic weakening technology for unsupported top coal at the end of fully mechanized caving face[J]. Journal of Mine Automation,2025,51(5):15-22. DOI: 10.13272/j.issn.1671-251x.2025020050
Citation: DONG Haofu, ZHANG Wei, SUN Guangjun, et al. Hydraulic weakening technology for unsupported top coal at the end of fully mechanized caving face[J]. Journal of Mine Automation,2025,51(5):15-22. DOI: 10.13272/j.issn.1671-251x.2025020050

综放工作面端头悬空顶煤水力破煤弱化技术

基金项目: 

国家自然科学基金联合基金重点项目(U21A20107)。

详细信息
    作者简介:

    董昊福(1975—),男,甘肃镇原人,高级工程师,现从事煤炭生产技术管理方面的工作,E-mail:2609885744@qq.com

  • 中图分类号: TD322

Hydraulic weakening technology for unsupported top coal at the end of fully mechanized caving face

  • 摘要:

    针对综放工作面端头的悬空顶煤长度过大、难以及时垮落的问题,基于高压水射流破煤造穴方法,提出了一种大倾角厚煤层端头顶煤水力破煤弱化技术。以东峡煤矿31123−1大倾角综放工作面为工程背景,建立了端头悬空顶煤力学模型,基于线性叠加原理推导了弯矩与剪应力共同作用下的悬空顶煤挠度方程,发现悬空顶煤自由端挠度最大,固定端因弯矩峰值产生最大拉应力,确定固定端处为水力弱化优选区域;揭示了高压水射流通过冲击破煤造穴、诱导裂隙扩展,切断顶煤与煤柱力学联系的弱化机制,并提出了钻孔定位→高压射流破煤→旋转造穴的标准化工序。运用数值计算和现场应用结合的方法,分析了采用该技术前后端头顶煤区域应力分布演化规律、巷道围岩变形特征与端头悬空顶煤垮落效果。结果表明:水力破煤弱化后,工作面煤柱内垂直应力和工作面超前支承应力峰值分别降低了29.6%和17.4%,巷道顶底板和两帮最大移近量分别降低了35.8%和37.8%,悬空顶煤长度由10 m减小至1 m。

    Abstract:

    To address the issue of excessive unsupported top coal length and delayed caving at the end of a fully mechanized caving face, a hydraulic weakening technology for face-end top coal in steeply inclined thick coal seams was proposed based on the coal-breaking and cavity creation method using high-pressure water jet. Taking the 31123-1 steeply inclined fully mechanized caving face of Dongxia Coal Mine as the engineering background, a mechanical model was established for the unsupported top coal condition at the end of a fully mechanized caving face. Based on the principle of linear superposition, the deflection equation under the combined action of bending moment and shear stress was derived. It was found that the deflection at the free end of the unsupported top coal was greatest, while the fixed end generated the maximum tensile stress due to the peak bending moment, identifying this area as the optimal zone for hydraulic weakening. This study revealed that high-pressure water jets weakened the mechanical connection between the top coal and coal pillar through impact-induced coal fracturing, cavity creation, and fracture propagation. A standardized procedure of "drilling positioning→high-pressure jet coal breaking→rotational cavity creation" was proposed. By combining numerical calculation and field application, this study analyzed the evolutionary patterns of stress distribution in the face-end top coal zone, deformation characteristics of surrounding rock of roadways, and collapse effects of unsupported face-end top coal before and after applying the new technology. The results demonstrated that after hydraulic weakening for coals, the peak values of vertical stress inside the coal pillar and advanced support stress of the working face decreased by 29.6% and 17.4%, respectively. The maximum convergence of the roof-to-floor and rib-to-rib in roadways reduced by 35.8% and 37.8%, respectively, and the unsupported top coal length decreased from the original 10 m to 1 m.

  • 图  1   工作面布置与端头悬空顶煤结构

    Figure  1.   Working surface layout and unsupported face-end top coal structure

    图  2   端头悬空顶煤水力破煤弱化控制思路

    Figure  2.   Conceptual approach for weakening of unsupported face-end top coal

    图  3   水力破煤

    Figure  3.   Hydraulic coal breaking

    图  4   工作面端头悬空顶煤力学模型

    Figure  4.   Mechanical model of unsupported face-end top coal

    图  5   31123−1工作面数值模型

    Figure  5.   Numerical model of working face 31123-1

    图  6   端头顶煤水力破煤弱化位置

    Figure  6.   Hydraulic weakening position for face-end top coal

    图  7   弱化前后端头顶煤垮落形态

    Figure  7.   Collapse patterns of face-end top coal before and after weakening

    图  8   弱化前后端头区域应力分布

    Figure  8.   Stress distribution of face-end area before and after weakening

    图  9   弱化前后煤柱内应力曲线

    Figure  9.   Internal stress curve of coal pillar before and after weakening

    图  10   水力破煤弱化方案设计参数

    Figure  10.   Design parameters of hydraulic coal breaking weakening scheme

    图  11   端头悬空顶煤垮落效果

    Figure  11.   Collapse effect of unsupported face-end top coal

    图  12   工作面超前钻孔应力变化曲线

    Figure  12.   Stress variation curves of advanced boreholes in working face

    图  13   回采巷道表面位移变化曲线

    Figure  13.   Variation curves of surface displacement in mining roadways

    表  1   顶底板及煤层物理力学参数

    Table  1   Physical and mechanical parameters of the roof, floor and coal seam

    岩体 密度/(kg·m−3 弹性模量/GPa 泊松比
    上覆岩层 2 540 11 000 0.30
    砂质泥岩 2 290 7 615 0.16
    中粗砂岩 2 583 12 000 0.29
    细砂岩 2 540 11 000 0.30
    泥岩 1 750 3 950 0.20
    6−1/6−2号煤层 1 750 3 950 0.20
    中细砂岩 2 583 12 000 0.29
    下伏岩层 2 540 11 000 0.30
    下载: 导出CSV

    表  2   各岩层块体接触面力学参数

    Table  2   Mechanical parameters of the contact surfaces of each rock stratum block

    岩体 切向刚度/
    GPa
    法向刚度/
    GPa
    黏聚力/
    MPa
    内摩擦
    角/(°)
    抗拉强度/
    MPa
    上覆岩层 15.09 37.73 4.65 32.00 4.00
    砂质泥岩 9.70 24.40 1.50 18.00 0.50
    中粗砂岩 5.56 14.40 3.50 19.00 0.80
    细砂岩 9.50 28.70 0 21.00 0
    泥岩 9.70 24.40 1.30 18.00 0.40
    6−1/6−2号煤层 4.60 11.50 0.80 14.00 0.32
    中细砂岩 2 583.00 12 000.00 0.29 5.56 14.40
    下伏岩层 0.30 15.09 37.73 4.65 32.00
    下载: 导出CSV
  • [1] 谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161-2178.

    XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178.

    [2] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789-1800.

    KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000 m[J]. Journal of China Coal Society,2018,43(7):1789-1800.

    [3] 康红普,范明建,高富强,等. 超千米深井巷道围岩变形特征与支护技术[J]. 岩石力学与工程学报,2015,34(11):2227-2241.

    KANG Hongpu,FAN Mingjian,GAO Fuqiang,et al. Deformation and support of rock roadway at depth more than 1 000 m[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2227-2241.

    [4] 靖洪文,尹乾,朱栋,等. 深部巷道围岩锚固结构失稳破坏全过程试验研究[J]. 煤炭学报,2020,45(3):889-901.

    JING Hongwen,YIN Qian,ZHU Dong,et al. Experimental study on the whole process of instability and failure of anchorage structure in surrounding rock of deep-buried roadway[J]. Journal of China Coal Society,2020,45(3):889-901.

    [5]

    GUO Zhibiao,WANG Qiong,LI Zhaohua,et al. Surrounding rock control of an innovative gob-side entry retaining with energy-absorbing supporting in deep mining[J]. International Journal of Low-Carbon Technologies,2019,14(1):23-35. DOI: 10.1093/ijlct/cty054

    [6] 靳钟铭,徐林生. 煤矿坚硬顶板控制[M]. 北京:煤炭工业出版社,1994.

    JIN Zhongming,XU Linsheng. Hard roof control in coal mine[M]. Beijing:China Coal Industry Publishing House,1994.

    [7] 窦林名,何学秋. 冲击矿压防治理论与技术[M]. 徐州:中国矿业大学出版社,2001.

    DOU Linming,HE Xueqiu. Theory and technology of rock burst prevention[M]. Xuzhou:China University of Mining & Technology Press,2001.

    [8] 宋选民,连清旺,邢平伟,等. 采空区顶板大面积垮落的空气冲击灾害研究[J]. 煤炭科学技术,2009,37(4):1-4,81.

    SONG Xuanmin,LIAN Qingwang,XING Pingwei,et al. Research on air bumping disaster induced by large roof falling in goaf[J]. Coal Science and Technology,2009,37(4):1-4,81.

    [9] 熊仁钦. 顶板大面积来压破坏机理的研究[J]. 煤炭学报,1995,20(增刊1):38-42.

    XIONG Renqin. Study on failure mechanism of roof under large area weighting[J]. Journal of China Coal Society,1995,20(S1):38-42.

    [10] 息金波. 采场顶板大面积垮落的飓风灾害的理论研究[D]. 太原:太原理工大学,2006.

    XI Jinbo. Theoretical study on hurricane disaster caused by large-scale roof collapse in stope[D]. Taiyuan:Taiyuan University of Technology,2006.

    [11] 周宏伟,石平五. 监测顶板运动 预报煤和瓦斯突出[J]. 矿山压力与顶板管理,1991(3):21-25,73.

    ZHOU Hongwei,SHI Pingwu. Predicting coal and gas outburst in coal face by monitoring roof movement[J]. Ground Pressure and Strata Control,1991(3):21-25,73.

    [12]

    HUANG Bingxiang,WANG Youzhuang,CAO Shenggen. Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams[J]. International Journal of Rock Mechanics and Mining Sciences,2015,74:45-57. DOI: 10.1016/j.ijrmms.2014.10.011

    [13]

    HUANG Bingxiang,WANG Youzhuang. Roof weakening of hydraulic fracturing for control of hanging roof in the face end of high gassy coal longwall mining:a case study[J]. Archives of Mining Sciences,2016,61(3):601-615. DOI: 10.1515/amsc-2016-0043

    [14] 刘健,刘泽功,高魁,等. 深孔爆破在综放开采坚硬顶煤预先弱化和瓦斯抽采中的应用[J]. 岩石力学与工程学报,2014,33(增刊1):3361-3367.

    LIU Jian,LIU Zegong,GAO Kui,et al. Application of deep borehole blasting to top-coal pre-weakening and gas extraction in fully mechanized caving[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):3361-3367.

    [15] 许红杰. “钻−切−压”定向水力压裂顶煤弱化技术应用研究[J]. 煤炭工程,2021,53(6):73-76.

    XU Hongjie. Application of drilling-cutting-fracturing directional hydraulic fracturing technology for top-coal weakening[J]. Coal Engineering,2021,53(6):73-76.

    [16] 卢义玉,葛兆龙,李晓红,等. 脉冲射流割缝技术在石门揭煤中的应用研究[J]. 中国矿业大学学报,2010,39(1):55-58,69.

    LU Yiyu,GE Zhaolong,LI Xiaohong,et al. Investigation of a self-excited pulsed water jet for rock cross-cutting to uncover coal[J]. Journal of China University of Mining & Technology,2010,39(1):55-58,69.

    [17] 王凤超. 磨料浆体射流冲击岩石动静态应力应变分布研究[D]. 徐州:中国矿业大学,2018.

    WANG Fengchao. Study on dynamic and static stress and strain distribution of abrasive slurry jet impacting rock[D]. Xuzhou:China University of Mining and Technology,2018.

    [18] 刘送永,李洪盛,江红祥,等. 矿山煤岩破碎方法研究进展及展望[J]. 煤炭学报,2023,48(2):1047-1069.

    LIU Songyong,LI Hongsheng,JIANG Hongxiang,et al. Research progress and prospect of coal-rock breaking methods in mines[J]. Journal of China Coal Society,2023,48(2):1047-1069.

    [19] 吴拥政. 回采工作面双巷布置留巷定向水力压裂卸压机理研究及应用[D]. 北京:煤炭科学研究总院,2018.

    WU Yongzheng. Study on de-stressing mechanism of directional hydraulic fracturing to control deformation of reused roadway in longwall mining with two gateroad layout and its onsite practices[D]. Beijing:China Coal Research Institute,2018.

    [20]

    GAO Fuqiang,STEAD D,KANG Hongpu. Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses[J]. Rock Mechanics and Rock Engineering,2015,48(4):1635-1645. DOI: 10.1007/s00603-014-0653-2

    [21]

    GAO Fuqiang,STEAD D,KANG Hongpu. Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach[J]. Computers and Geotechnics,2014,61:33-41. DOI: 10.1016/j.compgeo.2014.04.009

    [22]

    WU Wenda,BAI Jianbiao,WANG Xiangyu,et al. Numerical study of failure mechanisms and control techniques for a gob-side yield pillar in the Sijiazhuang Coal Mine,China[J]. Rock Mechanics and Rock Engineering,2019,52(4):1231-1245. DOI: 10.1007/s00603-018-1654-3

  • 期刊类型引用(3)

    1. 胡荣华,安冬,史梦圆,陆文涛,孙宁,张浩龙,徐加贤. 智能矿用机器人研究现状及发展趋势. 黄金. 2023(09): 59-68 . 百度学术
    2. 杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术. 煤炭学报. 2022(07): 2844-2872 . 百度学术
    3. 马艾强,姚顽强,蔺小虎,张联队,郑俊良,武谋达,杨鑫. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法. 工矿自动化. 2022(12): 49-56 . 本站查看

    其他类型引用(1)

图(13)  /  表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 4
出版历程
  • 收稿日期:  2025-02-23
  • 修回日期:  2025-05-19
  • 网络出版日期:  2025-05-13
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回