多煤层开采卸压防冲效果数值模拟研究

杨贵儒, 李红平, 周雨, 杨旭, 刘江, 王建淇, 梁洪宝, 卢安良, 李振雷

杨贵儒,李红平,周雨,等. 多煤层开采卸压防冲效果数值模拟研究[J]. 工矿自动化,2025,51(5):96-104. DOI: 10.13272/j.issn.1671-251x.2025020014
引用本文: 杨贵儒,李红平,周雨,等. 多煤层开采卸压防冲效果数值模拟研究[J]. 工矿自动化,2025,51(5):96-104. DOI: 10.13272/j.issn.1671-251x.2025020014
YANG Guiru, LI Hongping, ZHOU Yu, et al. Numerical simulation study on the pressure relief and anti-scour effects of multi-seam coal mining[J]. Journal of Mine Automation,2025,51(5):96-104. DOI: 10.13272/j.issn.1671-251x.2025020014
Citation: YANG Guiru, LI Hongping, ZHOU Yu, et al. Numerical simulation study on the pressure relief and anti-scour effects of multi-seam coal mining[J]. Journal of Mine Automation,2025,51(5):96-104. DOI: 10.13272/j.issn.1671-251x.2025020014

多煤层开采卸压防冲效果数值模拟研究

基金项目: 

国家自然科学基金资助项目(52374180)。

详细信息
    作者简介:

    杨贵儒(1974—),男,新疆吉木萨尔人,高级工程师,主要从事煤矿生产技术方面的研究,E-mail: 1664121273@qq.com

    通讯作者:

    李振雷(1988—),男,山东菏泽人,副教授,硕士研究生导师,博士,主要研究方向为冲击地压防治,E-mail: lizhenlei@ustb.edu.cn

  • 中图分类号: TD324

Numerical simulation study on the pressure relief and anti-scour effects of multi-seam coal mining

  • 摘要:

    现有多煤层开采卸压防冲研究多基于简化数值模型分析多煤层采动应力分布,难以真实反映复杂地质条件与煤层间物理力学相互作用,且对采空区与遗留煤柱叠加影响机制缺乏系统性表征。针对上述问题,以宽沟煤矿4组煤层开采为工程背景,通过数值模拟研究了多煤层采空区、遗留煤柱等复杂空间结构体对下伏煤层开采的影响,结果表明:单组煤层开采时,遗留煤柱下方有明显的应力集中,采空区下方卸压效果显著;多组煤层开采叠加影响下,多个煤层采空区边界重叠处应力集中程度进一步增大,而遗留煤柱的上下方若存在采空区,则其应力集中将显著降低,造成该遗留煤柱投影下方煤层的应力降低从而出现卸压;采空区的保护卸压和煤柱的应力集中效应随煤层间距的增加而降低。依据煤层应力集中系数划定煤层保护卸压区及应力集中区,即当煤层应力集中系数为(0,1],(1,2],(2,3],(3,∞)时,分别对应卸压区或无影响区、弱影响区、中等影响区、强影响区;使用电震矢量监测仪对划定区域的电磁辐射及声发射能量进行测试,结果验证了保护卸压区及应力集中区划定的准确性。

    Abstract:

    Existing studies on pressure relief and anti-scour in multi-seam coal mining mostly rely on simplified numerical models to analyze the mining-induced stress distribution of multiple coal seams, which makes it difficult to realistically reflect the complex geological conditions and the physical-mechanical interactions between coal seams. Moreover, there is a lack of systematic characterization of the combined influence mechanisms of goaf areas and remaining coal pillars. To address these issues, based on the engineering background of mining four coal seams in Kuangou Coal Mine, this study used numerical simulation to investigate the impact of complex spatial structures such as multi-seam goaf areas and remaining coal pillars on the mining of underlying coal seams. The results showed that: when mining a single coal seam, there was obvious stress concentration below the remaining coal pillar, and a significant pressure relief effect below the goaf area. Under the superimposed influence of mining multiple seams, the stress concentration at the overlapping boundaries of multiple goaf areas further increased. If there were goaf areas above and below the remaining coal pillar, its stress concentration significantly decreased, resulting in a stress reduction in the coal seam below the projection of the remaining pillar, thus causing pressure relief. The protective pressure relief effect of goaf areas and the stress concentration effect of coal pillars decreased as the spacing between coal seams increased. According to the coal seam stress concentration coefficient, the coal seam protection pressure relief zones and stress concentration zones were delineated: when the stress concentration coefficient was (0,1], (1,2], (2,3], and (3, ∞), they corresponded respectively to pressure relief or no influence zone, weak influence zone, moderate influence zone, and strong influence zone. Electromagnetic radiation and acoustic emission energy in the delineated areas were tested using an electroseismic vector monitoring instrument, and the results verified the accuracy of the delineated pressure relief and stress concentration zones.

  • 图  1   宽沟煤矿11采区各煤层工作面空间位置关系

    Figure  1.   Spatial relationships of working faces in multi-coal seams of 11th mining area of Kuangou Coal Mine

    图  2   宽沟煤矿各地层层位分布

    Figure  2.   Stratigraphic distribution of geological layers in Kuangou Coal Mine

    图  3   三维数值模型

    Figure  3.   Three-dimensional numerical model

    图  4   宽沟煤矿11采区原岩应力分布

    Figure  4.   Original rock stress distribution in 11th mining area of Kuangou Coal Mine

    图  5   B1煤层原岩应力分布

    Figure  5.   Original rock stress distribution in B1 coal seam

    图  6   剖面1位置B4和B2煤层开采前后应力分布(I010101工作面扩面前)

    Figure  6.   Stress distribution of B4 and B2 coal seams in section 1 before and after mining (in front of the expansion of I010101 working face)

    图  7   剖面2位置B4和B2煤层开采前后应力分布(I010101工作面扩面后)

    Figure  7.   Stress distribution of B4 and B2 coal seams in section 2 before and after mining (after the expansion of I010101 working face)

    图  8   剖面3位置B4和B2煤层开采前后应力分布(I010102工作面)

    Figure  8.   Stress distribution of B4 and B2 coal seams in section 3 before and after mining (I010102 working face)

    图  9   B1煤层保护卸压区及应力集中区划定结果

    Figure  9.   Delimitation results of pressure-relief zones and stress concentration zones in coal seam B1

    图  10   B1煤层工作面保护卸压区及应力集中区划定

    Figure  10.   Determination of the area affected by pressure relief and stress concentration in B1 coal seam working face protection

    图  11   I010101运输巷探测区域布置

    Figure  11.   Layout of detection area in I010101 transportation roadway

    图  12   I010101工作面运输巷探测区域1电磁辐射和声发射能量

    Figure  12.   Electromagnetic radiation and acoustic emission energy of detection area 1 in I010101 working face transportation roadway

    图  13   I010101工作面运输巷探测区域2电磁辐射和声发射能量

    Figure  13.   Electromagnetic radiation and acoustic emission energy of detection area 2 in I010101 working face transportation roadway

    表  1   地应力测试结果

    Table  1   In-situ stress test results

    钻孔
    编号
    主应力类别 主应力/MPa 方位角/(°) 倾角/(°)
    1最大主应力12.8183.10−9.90
    中间主应力7.543.60−77.00
    最小主应力6.894.508.30
    2最大主应力13.9183.70−9.73
    中间主应力8.147.62−76.61
    最小主应力7.495.279.11
    下载: 导出CSV

    表  2   煤岩体力学参数

    Table  2   Mechanical parameters of coal and rock

    岩性 密度/
    (kg·m−3
    体积模
    量/GPa
    剪切模
    量/GPa
    黏聚力/
    MPa
    抗拉强
    度/MPa
    内摩擦
    角/(°)
    表土层 2 208 4.33 4.02 4.21 2.08 34
    粗砂岩 2 671 6.23 6.71 6.92 3.32 36
    细砂岩 2 587 8.11 8.71 9.07 4.22 34
    粉砂岩 2 701 5.61 6.89 5.54 3.37 36
    泥岩 2 688 5.62 6.21 6.65 2.97 35
    B4−2煤 1 382 1.67 1.25 4.08 1.81 29
    B4−1煤 1 377 3.25 2.88 3.81 2.05 31
    B2煤 1 641 3.27 1.96 4.70 2.21 30
    B1煤 1 310 1.58 0.91 3.50 1.03 33
    下载: 导出CSV

    表  3   原岩应力求解后三向主应力数据

    Table  3   Three principal stress data after solving the original rock stress

    数据提取位置最大主应力/MPa中间主应力/MPa最小主应力/MPa
    钻孔113.6910.347.92
    钻孔213.7110.347.94
    下载: 导出CSV

    表  4   上覆煤层开采对B1煤层的保护卸压及应力集中作用判别准则

    Table  4   Discrimination criteria for protective pressure-relief and stress concentration effect of overlying coal seam mining on B1 coal seam

    保护卸压等级煤层应力集中系数$ \delta $煤层的保护卸压区和应力集中区
    I$ \delta $≤1卸压区或无影响区
    II1<$ \delta $≤2弱影响区
    III2<$ \delta $≤3中等影响区
    IV$ \delta $>3强影响区
    下载: 导出CSV
  • [1] 卢安良. 煤层群下行开采扰动作用及诱冲效应研究[D]. 徐州:中国矿业大学,2022.

    LU Anliang. Research on the disturbance and induced flushing effect of downward mining in coal seam groups[D]. Xuzhou:China University of Mining and Technology,2022.

    [2] 李杨,王建鹏,陈一鼎,等. 多煤层开采中间岩层对覆岩移动的影响研究[J]. 煤炭科学技术,2020,48(4):246-255.

    LI Yang,WANG Jianpeng,CHEN Yiding,et al. Study on effect of interburden on movement of overburden in multiple coal seams[J]. Coal Science and Technology,2020,48(4):246-255.

    [3] 张夏彭,王凯,周爱桃,等. 中远距离煤层群保护层多次开采卸压效果研究[J]. 煤矿安全,2025,56(5):100-113.

    ZHANG Xiapeng,WANG Kai,ZHOU Aitao,et al. Study on pressure relief effect of multiple mining of protective layer in medium and long distance coal seam group[J]. Safety in Coal Mines,2025,56(5):100-113.

    [4] 李春元,王泓博,石瑶玉. 上覆遗留区段煤柱对下伏煤层开采扰动影响研究[J]. 煤炭科学技术,2020,48(3):232-239.

    LI Chunyuan,WANG Hongbo,SHI Yaoyu. Study on disturbing influence of overlying remaining coal pillars on underlying coal seam mining[J]. Coal Science and Technology,2020,48(3):232-239.

    [5] 马宁,张臣,贾江锋,等. 上分层遗留煤柱影响下工作面安全回采研究[J]. 煤矿安全,2019,50(12):192-196.

    MA Ning,ZHANG Chen,JIA Jiangfeng,et al. Study on safe mining of working face under the influence of upper stratified coal pillar[J]. Safety in Coal Mines,2019,50(12):192-196.

    [6] 张念超. 多煤层煤柱底板应力分布规律及其应用[D]. 徐州:中国矿业大学,2016.

    ZHANG Nianchao. Stress distribution law of coal pillar floor in multi-seam and its application[D]. Xuzhou:China University of Mining and Technology,2016.

    [7] 黄庆享,曹健,贺雁鹏,等. 浅埋近距离煤层群分类及其采场支护阻力确定[J]. 采矿与安全工程学报,2018,35(6):1177-1184.

    HUANG Qingxiang,CAO Jian,HE Yanpeng,et al. Classification of shallow buried close seams group and support resistance determination[J]. Journal of Mining & Safety Engineering,2018,35(6):1177-1184.

    [8] 黄庆享,赵萌烨,黄克军. 浅埋煤层群开采顶板双关键层结构及支护阻力研究[J]. 中国矿业大学学报,2019,48(1):71-77,86.

    HUANG Qingxiang,ZHAO Mengye,HUANG Kejun. Study of roof double key strata structure and support resistance of shallow coal seams group mining[J]. Journal of China University of Mining & Technology,2019,48(1):71-77,86.

    [9]

    ZHU Defu,TU Shihao. Mechanisms of support failure induced by repeated mining under gobs created by two-seam room mining and prevention measures[J]. Engineering Failure Analysis,2017,82:161-178. DOI: 10.1016/j.engfailanal.2017.08.029

    [10] 屠世浩,王方田,窦凤金,等. 上层煤柱下综放沿空回采巷道矿压规律研究[J]. 中国矿业大学学报,2010,39(1):1-5.

    TU Shihao,WANG Fangtian,DOU Fengjin,et al. Fully mechanized top-coal caving:underground stress at gateways under barrier pillars of an upper coal seamm[J]. Journal of China University of Mining & Technology,2010,39(1):1-5.

    [11]

    ZHANG Chunlei,ZHANG Yong,ZUO Jianping,et al. Fracture pattern of overlying strata in multiple coal seam mining in a physical model vis-à-vis MATLAB analysis and geological radar[J]. Mining,Metallurgy & Exploration,2021,38(2):897-911.

    [12] 杨伟,兰世瑞,李振雷,等. 厚硬顶板多煤层开采煤柱型冲击显现分析[J]. 工矿自动化,2022,48(2):70-76.

    YANG Wei,LAN Shirui,LI Zhenlei,et al. Analysis of coal pillar rock burst appearance in multi-seam mining with thick and hard roof[J]. Industry and Mine Automation,2022,48(2):70-76.

    [13] 白小军,王志乾,李广治,等. 多煤层开采破断顶板群结构发育扩展规律研究[J]. 煤炭技术,2023,42(11):48-52.

    BAI Xiaojun,WANG Zhiqian,LI Guangzhi,et al. Research on structure development and expansion law of broken roof group in multi-coal seam mining[J]. Coal Technology,2023,42(11):48-52.

    [14] 高成,金腾,周志伟,等. 浅埋厚煤层开采覆岩破断与上覆煤层运移规律研究[J]. 煤炭工程,2024,56(12):95-102. DOI: 10.11799/ce202412015

    GAO Cheng,JIN Teng,ZHOU Zhiwei,et al. Overburden fracture and overlying coal seam migration laws in shallow and thick seam mining[J]. Coal Engineering,2024,56(12):95-102. DOI: 10.11799/ce202412015

    [15] 杜怀龙,刘忠平,田志诚. 近距离煤层上覆遗留煤柱应力扰动特征研究及应用[J]. 矿业安全与环保,2024,51(6):112-121.

    DU Huailong,LIU Zhongping,TIAN Zhicheng. Research and application of stress disturbance characteristic of overlying residual coal pillar in contiguous seams[J]. Mining Safety & Environmental Protection,2024,51(6):112-121.

    [16] 张永亮,杜怀龙. 厚煤层工作面区段保护煤柱合理尺寸分析[J]. 中国煤炭,2023,49(增刊2):186-193.

    ZHANG Yongliang,DU Huailong. Analysis of the reasonable size of section protective coal pillar in working face of thick coal seam[J]. China Coal,2023,49(S2):186-193.

    [17] 刘军. 煤层群上下保护层开采围岩应力及裂隙演化规律研究[J]. 矿业安全与环保,2024,51(4):56-63,73.

    LIU Jun. Study on the stress and fracture evolution law of surrounding rock during mining of upper and lower protective layers in coal seams[J]. Mining Safety & Environmental Protection,2024,51(4):56-63,73.

    [18] 孟凡林,王震,孙治豪,等. 近距离煤层采空区下厚煤层开采强矿压机理及控制研究[J]. 中国矿业,2024,33(9):130-138.

    MENG Fanlin,WANG Zhen,SUN Zhihao,et al. Study on mechanism and control of strong ore pressure in mining thick coal seam under goaf in close coal seam[J]. China Mining Magazine,2024,33(9):130-138.

    [19] 张传玖,李宣良,贾士耀,等. 多煤层采动层间覆岩破断规律及稳定性控制研究[J]. 矿业研究与开发,2024,44(8):104-112.

    ZHANG Chuanjiu,LI Xuanliang,JIA Shiyao,et al. Study on the fracture law and stability control of interlayer overburden rock in multiple coal seams mining[J]. Mining Research and Development,2024,44(8):104-112.

    [20] 丁自伟,巩欣伟,张杰,等. 煤层群下行开采底板应力演化规律与合理巷道错距研究[J]. 西安科技大学学报,2024,44(2):213-225.

    DING Ziwei,GONG Xinwei,ZHANG Jie,et al. Study on the evolution law of bottom plate stress and reasonable roadway misalignment in downstream mining of coal seam group[J]. Journal of Xi'an University of Science and Technology,2024,44(2):213-225.

    [21] 杨曜驰,赵国贞. 近距离煤层群多重采动覆岩破坏特征及应力传递规律研究[J]. 煤炭工程,2024,56(3):110-116.

    YANG Yaochi,ZHAO Guozhen. Failure characteristics and stress transfer rule of overburden under multiple mining in contiguous coal seams[J]. Coal Engineering,2024,56(3):110-116.

    [22] 韦梦菡,何学秋,宋大钊,等. 煤岩破裂电磁辐射矢量特征规律[J]. 中国矿业大学学报,2023,52(6):1096-1107.

    WEI Menghan,HE Xueqiu,SONG Dazhao,et al. Vector characteristics and laws of electromagnetic radiation generated from coal rock fracture[J]. Journal of China University of Mining & Technology,2023,52(6):1096-1107.

  • 期刊类型引用(5)

    1. 徐洋. 煤矿电网用SVG控制策略优化设计. 江西煤炭科技. 2025(02): 190-192 . 百度学术
    2. 刘诗源. 煤矿场景下单相级联H桥整流器解耦控制方法研究. 工矿自动化. 2024(04): 159-168 . 本站查看
    3. 倪少军,于铄航,华程,程卫健. 基于PIMC-STATCOM的低压配电网电能质量治理. 供用电. 2023(11): 76-83 . 百度学术
    4. 董旭光. 煤矿供电系统防越级跳闸技术及其应用研究. 煤炭与化工. 2022(08): 87-89+93 . 百度学术
    5. 胡春龙. 基于模糊自适应的三电平SVG控制方法研究. 自动化仪表. 2022(12): 71-75 . 百度学术

    其他类型引用(5)

图(13)  /  表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 10
出版历程
  • 收稿日期:  2025-02-10
  • 修回日期:  2025-05-21
  • 网络出版日期:  2025-05-27
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回