液压支架推溜油缸电液缓冲控制阀设计与试验研究

姜苏龙, 郭蒲, 赵继云, 满家祥, 曹超

姜苏龙,郭蒲,赵继云,等. 液压支架推溜油缸电液缓冲控制阀设计与试验研究[J]. 工矿自动化,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052
引用本文: 姜苏龙,郭蒲,赵继云,等. 液压支架推溜油缸电液缓冲控制阀设计与试验研究[J]. 工矿自动化,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052
JIANG Sulong, GUO Pu, ZHAO Jiyun, et al. Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder[J]. Journal of Mine Automation,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052
Citation: JIANG Sulong, GUO Pu, ZHAO Jiyun, et al. Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder[J]. Journal of Mine Automation,2025,51(2):27-33. DOI: 10.13272/j.issn.1671-251x.2024120052

液压支架推溜油缸电液缓冲控制阀设计与试验研究

基金项目: 国家自然科学基金重点项目(U1910212);国家自然科学基金青年基金项目(52104168)。
详细信息
    作者简介:

    姜苏龙(1988—),男,陕西米脂人,工程师,从事矿山装备技术研究工作,E-mail:jslylys@163.com

    通讯作者:

    赵继云(1966—),男,江苏连云港人,教授,博士,博士研究生导师,研究方向为矿山机械与装备、水液压元件与系统,E-mail:jyzhao@cumt.edu.cn

  • 中图分类号: TD355.4

Design and experimental study of electro-hydraulic buffer control valve for hydraulic support push cylinder

  • 摘要:

    工作面液压支架推溜油缸在进行推溜和拉架时,启动瞬间压力冲击剧烈,易造成推溜油缸鼓缸、涨缸、密封失效甚至连接销轴断裂。针对该问题,分析了推溜油缸启动瞬间的压力冲击成因,提出了一种用于缓冲液压支架推溜油缸压力的电液缓冲控制阀。理论分析了电液缓冲控制阀的阀口开度、液阻、压力流量特性等参数,设计了电液缓冲控制阀的关键结构参数。在AMESim中构建了电液缓冲控制阀仿真模型,验证了电液缓冲控制阀缓冲推溜压力的可行性。基于理论分析和仿真结果,试制了电液缓冲控制阀的样机,并搭建了电液缓冲控制阀模拟试验平台,通过模拟推溜油缸负载测试电液缓冲控制阀的工作性能,结果表明:使用电液缓冲控制阀后,推溜油缸的压力冲击从17 MPa降低到9.6 MPa,推溜油缸的推移速度小幅降低。通过井下工作面现场试验进一步验证电液缓冲控制阀对推溜油缸的缓冲控制效果,结果表明:安装电液缓冲控制阀后,支架推溜油缸推溜冲击压力从22.3 MPa降低到16.2MPa,推溜油缸启动推溜瞬间的压力冲击降低了27.3%,验证了电液缓冲控制阀能有效降低推溜油缸在推溜时的压力冲击,为液压支架推溜油缸压力缓冲提供了新的解决方案。

    Abstract:

    During the pushing and pulling operations of the push cylinder of the hydraulic support in the working face, the instantaneous pressure surge at startup is severe, which can lead to cylinder bulging, expansion, seal failure, or even the fracture of connecting pins. To address this issue, the causes of pressure surges at the startup of the push cylinder are analyzed, and an electro-hydraulic buffer control valve is proposed to mitigate these surges. A theoretical analysis was conducted on key parameters such as valve opening, hydraulic resistance, and pressure-flow characteristics, and the key structural parameters of the electro-hydraulic buffer control valve were designed. A simulation model was developed in AMESim to verify its feasibility in buffering push pressure. Based on theoretical analysis and simulation results, a prototype of the electro-hydraulic buffer control valve was developed, and a simulation test platform was established to evaluate its performance by simulating push cylinder loads. The results showed that after using the electro-hydraulic buffer control valve, the pressure surge of the push cylinder was reduced from 17 MPa to 9.6 MPa, with a slight decrease in pushing speed. Field tests in an underground working face further confirmed the buffering effect of the electro-hydraulic buffer control valve on the push cylinder. The results showed that after installing the electro-hydraulic buffer control valve, the impact pressure of the push cylinder decreased from 22.3 MPa to 16.2 MPa, reducing the instantaneous pressure surge at startup by 27.3%. The findings verify that the electro-hydraulic buffer control valve can effectively reduce pressure surges during the pushing operations, providing a new solution for pressure buffering in push cylinders of hydraulic supports.

  • 图  1   综采工作面推溜调直

    Figure  1.   Pushing and straightening in fully mechanized mining face

    图  2   液压支架电液换向阀组与推溜油缸控制液压原理

    Figure  2.   Electro-hydraulic directional valve group and hydraulic control principle of push cylinder of hydraulic support

    图  3   电液缓冲控制阀结构

    1—端盖;2—主阀块;3—主阀芯;4—出口;5—进口;6—动密封;7—阀堵;8—螺栓。

    Figure  3.   Structure of electro-hydraulic buffer control valve

    图  4   电液缓冲控制阀推溜系统回路

    Figure  4.   Circuit of pushing system withelectro-hydraulic buffer control valve sliding system

    图  5   推溜油缸电液缓冲控制阀AMESim仿真模型

    Figure  5.   AMESim simulation model of electro-hydraulic buffer control valve for push cylinder

    图  6   安装电液缓冲控制阀后推溜油缸压力曲线

    Figure  6.   Pressure curves of push cylinder after installing - buffer control valve

    图  7   电液缓冲控制阀模拟试验平台

    Figure  7.   Simulation test platform for electro-hydraulic buffer control valve

    图  8   推溜油缸压力模拟试验曲线

    Figure  8.   Pressure curves of push cylinder in simulation test

    图  9   推溜油缸位移模拟试验曲线

    Figure  9.   Displacement curves of push cylinder in simulation test

    图  10   未加电液缓冲控制阀时的支架推溜油缸压力和位移曲线

    Figure  10.   Pressure and displacement curves of push cylinder before installing the electro-hydraulic buffer valve

    图  11   阻尼直径为1 mm时推溜油缸压力和位移曲线

    Figure  11.   Pressure and displacement curves of push cylinder with a damping diameter of 1 mm

    图  12   阻尼直径为1.5 mm时推溜油缸压力和位移曲线

    Figure  12.   Pressure and displacement curves of push cylinder with a damping diameter of 1.5 mm

    表  1   仿真模型主要参数

    Table  1   Main parameters of simulation model

    参数名称 数值 参数名称 数值
    工作压力/MPa 30 主阀芯直径/mm 35
    工作温度/℃ 40 过流孔直径/mm 2
    动力黏度/(Pa·s) 0.001 5 阀芯位移/mm 24
    油缸缸径/mm 250 过流孔长度/mm 9
    油缸杆径/mm 160 油缸行程/mm 1 000
    下载: 导出CSV
  • [1] 国家发展改革委,国家能源局. 能源技术革命创新行动计划(2016—2030年)[EB/OL]. [2024-11-16]. https://www.gov.cn/xinwen/2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.

    National Development and Reform Commission,National Energy Administration. Energy technology revolution and innovation action plan(2016-2030) [EB/OL]. [2024-11-16]. https://www.gov.cn/xinwen/ 2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf.

    [2] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.

    [3] 魏文艳. 综采工作面智能化开采技术发展现状及展望[J]. 煤炭科学技术,2022,50(增刊2):244-253.

    WEI Wenyan. Development status and prospect of intelligent mining technology of longwall mining[J]. Coal Science and Technology,2022,50(S2):244-253.

    [4] 王雪松,王世博,王世佳,等. 刮板输送机直线度误差预测模型[J]. 中国矿业大学学报,2023,52(1):168-177.

    WANG Xuesong,WANG Shibo,WANG Shijia,et al. Prediction model of straightness error of scraper conveyor[J]. Journal of China University of Mining & Technology,2023,52(1):168-177.

    [5] 王云飞,赵继云,张鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951

    WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951

    [6] 杨润坤. 异常载荷影响下的综采工作面刮板输送机瞬态断链过程力学特性研究[D]. 阜新:辽宁工程技术大学,2021.

    YANG Runkun. Study on the mechanical characteristics of the transient chain-breaking process of the scraper conveyor in fully mechanized mining face under the influence of abnormal load[D]. Fuxin:Liaoning Technical University,2021.

    [7] 马光明,王世博,葛世荣,等. 基于联立约束法的液压支架动力学建模[J]. 计算机仿真,2022,39(3):308-314. DOI: 10.3969/j.issn.1006-9348.2022.03.060

    MA Guangming,WANG Shibo,GE Shirong,et al. Dynamic modeling of powered support based on co-restriction method[J]. Computer Simulation,2022,39(3):308-314. DOI: 10.3969/j.issn.1006-9348.2022.03.060

    [8] 李钰. 液压支架推移油缸定位控制分析[J]. 煤矿机电,2024,45(5):58-62.

    LI Yu. Positioning control analysis of hydraulic support push cylinder[J]. Colliery Mechanical & Electrical Technology,2024,45(5):58-62.

    [9] 董庆震. 高压超大流量高水基卸荷阀的研究[D]. 兰州:兰州理工大学,2021.

    DONG Qingzhen. Research on high pressure,super large flow and high water-based unloading valve[D]. Lanzhou:Lanzhou University of Technology,2021.

    [10] 张鹤,赵继云,王云飞,等. 双阀芯增量式高水基数字阀的设计及实验研究[J]. 工程科学与技术,2025,57(1):347-356.

    ZHANG He,ZHAO Jiyun,WANG Yunfei,et al. Design and experimental study of dual-spool incremental high-water-based digital valve[J]. Advanced Engineering Sciences,2025,57(1):347-356.

    [11] 赵瑞豪. 高速开关阀先导控制的高水基比例方向阀特性分析及控制策略[D]. 太原:太原理工大学,2022.

    ZHAO Ruihao. Research on the characteristics and control strategy of the high water-based proportional directional valve with pilot control by the high-speed switching valve[D]. Taiyuan:Taiyuan University of Technology,2022.

    [12] 郭资鉴,孟令宇. 液压缸负载模拟实验台设计[J]. 煤矿机械,2023,44(6):27-30.

    GUO Zijian,MENG Lingyu. Design of hydraulic cylinder load simulation test platform[J]. Coal Mine Machinery,2023,44(6):27-30.

    [13] 曹超,赵继云,高凯,等. 液压支架供液系统快速泵控补液稳压方法研究 [J/OL]. 煤炭科学技术:1-12[2024-11-21]. http://kns.cnki.net/kcms/detail/ 11.2402.TD.20240613.1528.007.html.

    CAO Chao,ZHAO Jiyun,GAO Kai,et al. Study on the method of fast pump-controlled rehydration and pressure stabilization for hydraulic support liquid supply system[J/OL]. Coal Science and Technology:1-12 [2024-11-21]. http://kns.cnki.net/kcms/detail/11.2402. TD.20240613.1528.007.html.

    [14] 李小玉. 刮板输送机传动冲击形成机理研究[D]. 徐州:中国矿业大学,2021.

    LI Xiaoyu. Research on mechanism of transmission impact of scraper conveyor[D]. Xuzhou:China University of Mining and Technology,2021.

    [15] 王鑫. 刮板输送机异常载荷下动力学特性研究[D]. 阜新:辽宁工程技术大学,2021.

    WANG Xin. Research on dynamic characteristics of scraper conveyor under abnormal load[D]. Fuxin:Liaoning Technical University,2021.

    [16] 穆健勇,吕善超,王创举,等. 集成调速功能的电液主阀:CN114165265A[P]. 2022-03-11.

    MU Jianyong,LYU Shanchao,WANG Chuangju,et al. Electro-hydraulic main valve with integrated speed regulation function:CN114165265A[P]. 2022-03-11.

    [17] 周如林,黄园月,乔子石,等. 一种调速阀及液压支架上用联动调速油路:CN114151113A[P]. 2022-03-08.

    ZHOU Rulin,HUANG Yuanyue,QIAO Zishi,et al. A speed control valve and a linked speed control oil circuit for use on hydraulic supports:CN114151113A[P]. 2022-03-08.

    [18] 王世博,张辉. 综采工作面推移动力学模型与仿真分析[J]. 机械工程学报,2022,58(7):117-130. DOI: 10.3901/JME.2022.07.117

    WANG Shibo,ZHANG Hui. Dynamic model and simulation analysis of advancement of fully mechanized mining face[J]. Journal of Mechanical Engineering,2022,58(7):117-130. DOI: 10.3901/JME.2022.07.117

    [19] 王国法. 液压支架控制技术[M]. 北京:煤炭工业出版社,2010.

    WANG Guofa. Control techenology of powered support[M]. Beijing:China Coal Industry Publishing House,2010.

    [20] 李俊士. 矿用电磁先导阀换向特性低功耗测试平台设计[J]. 工矿自动化,2022,48(12):158-163.

    LI Junshi. Design of low-power test platform for reversing characteristics of mine solenoid pilot valve[J]. Journal of Mine Automation,2022,48(12):158-163.

    [21] 蒋佑华,曹建波,胡小雄. 一种直流电磁铁响应时间的测试方法[J]. 液压气动与密封,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017

    JIANG Youhua,CAO Jianbo,HU Xiaoxiong. A test method of response time for DC electromagnet[J]. Hydraulics Pneumatics & Seals,2017,37(10):52-53. DOI: 10.3969/j.issn.1008-0813.2017.10.017

  • 期刊类型引用(3)

    1. 杜文中,张金,赵永亮. 我国供水工程中水泵节能降耗技术研究现状与展望. 机电工程技术. 2022(12): 284-287+296 . 百度学术
    2. 谢国坤,王亚亚,王娟娟. 基于傅里叶归一化的变频器开路故障诊断方法研究. 自动化与仪器仪表. 2020(09): 29-32 . 百度学术
    3. 李国号. 配电自动化主站系统负荷转供协调控制方法研究. 科技通报. 2020(11): 84-88 . 百度学术

    其他类型引用(5)

图(12)  /  表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-02-14
  • 网络出版日期:  2025-02-27
  • 刊出日期:  2025-02-14

目录

    /

    返回文章
    返回