Evolution characteristics of overburden structure in inclined fully mechanized caving under residual coal pillars of the upper layer
-
摘要:
特厚煤层分层综放开采上下分层工作面斜交布置时,下分层综放工作面间歇性过上分层遗留区段煤柱导致覆岩破断运动及矿压显现规律复杂,围岩控制困难,制约了煤矿安全生产。以甘肃华亭煤电股份有限公司砚北煤矿250203下综放工作面为工程背景,采用物理相似模拟实验、数值计算、现场实测相结合的方法,研究了上分层遗留区段煤柱下斜交工作面综放开采覆岩运移规律及应力分布演化特征,阐明了下分层综放工作面开采扰动下上分层遗留区段煤柱失稳特征及围岩支承压力变化规律,定义了斜交工作面覆岩内场和外场,揭示了下分层综放工作面过遗留区段煤柱覆岩结构演化特征。研究结果表明:① 下分层综放工作面开采诱发上分层遗留区段煤柱失稳导致覆岩大尺度空间垮落,扰动区内顶板结构渐次演化,形成“低位倒台阶组合悬臂梁+高位大结构砌体梁”组合结构。② 在工作面距区段煤柱15 m时,区段煤柱最大垂直应力达到46.7 MPa,较下分层未开采时增大了9.9%,煤柱形变现象较为明显;工作面位于区段煤柱正下方时,区段煤柱应力集中区域呈近似“月牙状”分布。③ 随着下分层综放工作面与上覆遗留区段煤柱斜交位置变化,外场覆岩破断形态呈近似对称梯形,结构动态失稳导致内场垮落形态呈“非对称双拱”、“对称双拱”、“单拱”演化过程。研究结果对特厚煤层分层综放工作面安全开采具有指导意义。
Abstract:In the stratified fully mechanized caving of ultra-thick coal seams, the inclined layout of upper and lower caving faces leads to lower fully mechanized caving face intermittently crossing residual coal pillars of the upper layer. This results in complex overburden breakage and mine pressure behavior, posing challenges to surrounding rock control and hindering safe coal production. Based on the 250203 lower fully mechanized caving face at Yanbei Coal Mine of Gansu Huating Coal Power Co., Ltd., methods of physical similarity simulation experiments, numerical modeling, and field measurements were applied to study the overburden movement and stress distribution evolution characteristics under residual coal pillars of the upper layer during inclined fully mechanized caving. The instability characteristics of residual coal pillars of the upper layer and the variation patterns of surrounding rock support pressure under the disturbance of lower fully mechanized caving were clarified. The overburden of the inclined working face was categorized into internal and external fields, and the evolution characteristics of the overburden structure when the lower fully mechanized caving face crossed the residual coal pillars were revealed. The results showed that the mining of the lower fully mechanized caving face induced instability in residual coal pillars of the upper layer, resulting in large-scale overburden collapse. The roof structure within the disturbed zone evolved progressively into a composite structure of "low-level inverted step cantilever beams and high-level large masonry beams". When the working face was 15 m from the residual coal pillar, the maximum vertical stress of the pillar reached 46.7 MPa, an increase of 9.9% compared to the pre-mining state, with significant pillar deformation observed. When the working face was directly beneath the residual coal pillar, the stress concentration zones of the pillar displayed an approximately crescent-shaped distribution. As the inclined position of the lower fully mechanized caving face relative to the residual coal pillars changed, the overburden breakage in the external field exhibited an approximately symmetrical trapezoidal shape. The dynamic instability of the structure caused the overburden collapse in the internal field to evolve through stages of "asymmetric double arches", "symmetric double arches", and "single arch". These findings provide significant guidance for the safe mining of stratified fully mechanized caving faces in ultra-thick coal seams.
-
-
表 1 煤岩物理力学参数
Table 1 Physical and mechanical parameters of coal and rock
岩层 厚度/m 埋深/m 密度/(kg·m−3) 体积力/(kN·m−3) 弹性模量/MPa 内摩擦角/(°) 黄土 39.50 39.50 1600 16.00 10 15 泥岩、砾岩 169.30 178.85 2220 22.20 2790 38 砂质泥岩 46.25 225.00 2220 22.20 2790 35 砾岩 8.47 233.47 2220 22.20 2790 35 粉砂质泥岩 14.77 248.24 2530 25.30 1740 28 泥岩 14.52 262.76 2530 24.20 1400 31 细砂岩 16.45 279.21 2420 26.40 4130 26 泥质粉砂岩 7.68 286.89 2640 25.30 1740 25 粉砂质泥岩 19.68 306.57 2530 25.30 1740 26 泥质粉砂岩 14.35 320.92 2530 25.30 1740 36 中粒砂岩 36.98 356.90 2530 23.60 5200 32 3号煤层 0.88 357.78 1300 13.00 800 35 细砂岩 10.43 368.21 2640 26.40 4130 35 泥岩 2.76 372.42 2420 24.20 1400 36 粗砂岩 12.14 384.56 2410 24.10 2860 25 细砂岩 13.85 398.41 2640 26.40 4130 35 粉砂质泥岩 18.75 417.16 2530 25.30 1740 35 细砂岩 37.66 454.82 2640 26.40 4130 25 粉砂岩 18.28 473.10 2530 25.30 1740 32 粉砂质泥岩 4.50 477.60 2530 25.30 1400 32 5号煤层 33.48 507.60 1300 13.00 800 35 粗砂岩 9.12 516.72 2630 23.60 2860 35 表 2 物理相似模型配比
Table 2 Material ratios for physical similarity model
岩性 配比 单位煤岩层高度所需材料质量/(kg·cm−1) 河砂 石膏 大白粉 粉煤灰 泥岩、砾岩 80∶3∶7 8.53 0.32 0.75 — 砂质泥岩 80∶3∶7 8.53 0.32 0.75 — 砾岩 80∶3∶7 8.53 0.32 0.75 — 粉砂质泥岩 40∶2∶3 8.53 0.43 0.64 — 泥岩 45∶1∶4 8.64 0.19 0.77 — 细砂岩 70∶3∶7 8.40 0.36 0.84 — 泥质粉砂岩 40∶2∶3 8.53 0.43 0.64 — 粉砂质泥岩 40∶2∶3 8.53 0.43 0.64 — 泥质粉砂岩 40∶2∶3 8.53 0.43 0.64 — 中粒砂岩 45∶1∶4 8.64 0.19 0.77 — 3号煤 21∶1∶2∶21 2.69 0.13 0.26 2.69 细砂岩 70∶3∶7 8.40 0.36 0.84 — 泥岩 45∶1∶4 8.64 0.19 0.77 — 粗砂岩 40∶1∶4 8.53 0.21 0.85 — 细砂岩 70∶3∶7 8.40 0.36 0.84 — 粉砂质泥岩 40∶2∶3 8.53 0.43 0.64 — 细砂岩 70∶3∶7 8.40 0.36 0.84 — 粉砂岩 40∶2∶3 8.53 0.43 0.64 — 粉砂质泥岩 40∶2∶3 8.53 0.43 0.64 — 5号煤 21∶1∶2∶21 2.69 0.13 0.26 2.69 粗砂岩 35∶2∶3 8.40 0.48 0.72 — -
[1] 马莲净,赵宝峰,曹海东. 特厚煤层分层综放开采软弱覆岩破坏规律研究[J]. 安全与环境学报,2019,19(2):474-481. MA Lianjing,ZHAO Baofeng,CAO Haidong. Probe into the failure trend of the loosely overlying strata with the fully-mechanized sub-level caving in the ultra-thick coal seam[J]. Journal of Safety and Environment,2019,19(2):474-481.
[2] 于斌,杨敬轩,刘长友,等. 大空间采场覆岩结构特征及其矿压作用机理[J]. 煤炭学报,2019,44(11):3295-3307. YU Bin,YANG Jingxuan,LIU Changyou,et al. Overburden structure and mechanism of rock pressure in large space stope[J]. Journal of China Coal Society,2019,44(11):3295-3307.
[3] 于斌,匡铁军,杨敬轩,等. 特厚煤层开采坚硬顶板覆岩结构及其演化特征分析[J]. 煤炭科学技术,2023,51(1):95-104. YU Bin,KUANG Tiejun,YANG Jingxuan,et al. Analysis of overburden structure and evolution characteristics of hard roof mining in extremely thick coal seam[J]. Coal Science and Technology,2023,51(1):95-104.
[4] 于斌,朱卫兵,李竹,等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报,2018,43(9):2398-2407. YU Bin,ZHU Weibing,LI Zhu,et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society,2018,43(9):2398-2407.
[5] 窦林名,贺虎. 煤矿覆岩空间结构OX−F−T演化规律研究[J]. 岩石力学与工程学报,2012,31(3):453-460. DOI: 10.3969/j.issn.1000-6915.2012.03.003 DOU Linming,HE Hu. Study of OX-F-T spatial structure evolution of overlying strata in coal mines[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):453-460. DOI: 10.3969/j.issn.1000-6915.2012.03.003
[6] 侯玮,霍海鹰. “C” 型覆岩空间结构采场岩层运动规律及动压致灾机理[J]. 煤炭学报,2012,37(增刊2):269-274. HOU Wei,HUO Haiying. Stope rock movement rule of C-shaped of overlying strata spatial structure and disaster-causing mechanism of dynamic pressure[J]. Journal of China Coal Society,2012,37(S2):269-274.
[7] 侯玮,姜福兴,王存文,等. 三面采空综放采场“C” 型覆岩空间结构及其矿压控制[J]. 煤炭学报,2009,34(3):310-314. DOI: 10.3321/j.issn:0253-9993.2009.03.005 HOU Wei,JIANG Fuxing,WANG Cunwen,et al. Pressure control in sub-level long face surrounded by three sides mined areas of C-shaped strata spatial structure[J]. Journal of China Coal Society,2009,34(3):310-314. DOI: 10.3321/j.issn:0253-9993.2009.03.005
[8] 史红,王存文,孔令海,等. “S” 型覆岩空间结构煤柱导致冲击失稳的力学机制探讨[J]. 岩石力学与工程学报,2012,31(增刊2):3508-3513. SHI Hong,WANG Cunwen,KONG Linghai,et al. Mechanism discussion on rock bursting caused by coal pillar of S-shaped overlying multi-strata spatial structure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3508-3513.
[9] 姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报,2006,23(1):30-33. DOI: 10.3969/j.issn.1673-3363.2006.01.006 JIANG Fuxing. Viewpoint of spatial structures of overlying strata and its application in coal mine[J]. Journal of Mining & Safety Engineering,2006,23(1):30-33. DOI: 10.3969/j.issn.1673-3363.2006.01.006
[10] 姜福兴,杨淑华. 微地震监测揭示的采场围岩空间破裂形态[J]. 煤炭学报,2003,28(4):357-360. DOI: 10.3321/j.issn:0253-9993.2003.04.005 JIANG Fuxing,YANG Shuhua. Spatial fracturing progresses of surrounding rock masses in longwall face monitored by microseismic monitoring techniques[J]. Journal of China Coal Society,2003,28(4):357-360. DOI: 10.3321/j.issn:0253-9993.2003.04.005
[11] 韩红凯,史灿,许家林,等. 基于采动覆岩关键层“板−梁”结构的应力场预测模型研究[J]. 采矿与安全工程学报,2024,41(6):1190-1201. HAN Hongkai,SHI Can,XU Jialin,et al. Mining-induced stress field prediction model based on the "slab-beam" structure of overburden key strata[J]. Journal of Mining & Safety Engineering,2024,41(6):1190-1201.
[12] 韩红凯,王晓振,许家林,等. 覆岩关键层结构失稳后的运动特征与“再稳定” 条件研究[J]. 采矿与安全工程学报,2018,35(4):734-741. HAN Hongkai,WANG Xiaozhen,XU Jialin,et al. Study on the movement characteristics and "re-stabilization" conditions of overlying key stratum structure after losing stability[J]. Journal of Mining & Safety Engineering,2018,35(4):734-741.
[13] 娄金福. 采场覆岩破断与应力演化的梁拱二元结构及岩层特性影响机制[J]. 采矿与安全工程学报,2021,38(4):678-686. LOU Jinfu. Influence mechanism of beam-arch binary structure and strata characteristics on fracture and stress evolution of overlying strata in stope[J]. Journal of Mining & Safety Engineering,2021,38(4):678-686.
[14] 张海鹏. 综放开采覆岩结构稳定性及支架支护阻力分析——以保德煤矿为例[J]. 煤炭科学技术,2022,50(增刊1):48-53. ZHANG Haipeng. Analysis on stability of overburden structure and support resistance in fully mechanized top coal caving mining:taking Baode Coal Mine as an example[J]. Coal Science and Technology,2022,50(S1):48-53.
[15] 杨俊哲. 7.0 m大采高工作面覆岩破断及矿压显现规律研究[J]. 煤炭科学技术,2017,45(8):1-7. YANG Junzhe. Study on overlying strata breakage and strata behaviors law of 7.0 m mining height working face[J]. Coal Science and Technology,2017,45(8):1-7.
[16] 任永康,李宝富,王富林. 特厚煤层综放工作面矿压显现规律分析[J]. 工矿自动化,2011,37(4):70-73. REN Yongkang,LI Baofu,WANG Fulin. Analysis of ground behavior regularity of fully mechanized face with extra thick coal seam[J]. Industry and Mine Automation,2011,37(4):70-73.
[17] 凌志强,赵森,顿长健. 特厚煤层区段煤柱宽度变化区冲击危险性分析及防治实践[J]. 矿业安全与环保,2021,48(6):118-122. LING Zhiqiang,ZHAO Sen,DUN Changjian. The impact risk analysis and prevention practice of the coal pillar width variation area in the extra-thick coal seam[J]. Mining Safety & Environmental Protection,2021,48(6):118-122.
[18] 王高昂,朱斯陶,姜福兴,等. 倾斜综放工作面双层叠加煤柱诱冲机理及安全开采技术[J]. 采矿与安全工程学报,2023,40(1):36-47. WANG Gao'ang,ZHU Sitao,JIANG Fuxing,et al. Mechanism and safety mining technology of rock burst induced by double layer superposition coal pillar in inclined fully mechanized caving face[J]. Journal of Mining & Safety Engineering,2023,40(1):36-47.
[19] 窦林名,卢安良,曹晋荣,等. 双煤层不规则煤柱应力−能量演化规律及防冲技术研究[J]. 煤炭科技,2021,42(2):1-9. DOU Linming,LU Anliang,CAO Jinrong,et al. Study on stress-energy evolution law of irregular coal pillar in double coal seams and anti-scouring technology[J]. Coal Science & Technology Magazine,2021,42(2):1-9.
[20] 黄庆享,高翔宇,贺雁鹏,等. 浅埋近距离煤层工作面过末采煤柱覆岩结构及动载传递规律研究[J]. 采矿与安全工程学报,2023,40(3):517-524. HUANG Qingxiang,GAO Xiangyu,HE Yanpeng,et al. Research on strata structure and dynamic load transfer of under coal pillars of last mining section in shallow and close coal seams[J]. Journal of Mining & Safety Engineering,2023,40(3):517-524.
[21] 高瑞,于斌,孟祥斌. 工作面过煤柱强矿压显现机理及地面压裂控制研究[J]. 采矿与安全工程学报,2018,35(2):324-331. GAO Rui,YU Bin,MENG Xiangbin. Study on the mechanism of strong strata behavior influenced by overlying coal pillar and control technology of ground fracturing[J]. Journal of Mining & Safety Engineering,2018,35(2):324-331.
[22] 杨欢,郑凯歌,李彬刚,等. 工作面过上覆遗留煤柱致灾机理及超前区域防治技术研究[J]. 煤炭科学技术,2023,51(9):46-54. DOI: 10.12438/cst.2022-1373 YANG Huan,ZHENG Kaige,LI Bingang,et al. Disaster mechanism during passing of working face under overlying remnant coal pillar and advanced regional prevention technology[J]. Coal Science and Technology,2023,51(9):46-54. DOI: 10.12438/cst.2022-1373
[23] 吴文达,王天辰,柏建彪. 煤柱下综采工作面矿压特征及水力压裂切顶控制[J]. 太原理工大学学报,2023,54(4):684-691. WU Wenda,WANG Tianchen,BAI Jianbiao. Mine pressure characteristics in fully mechanized working face while mining under residual coal pillar and hydraulic fracturing roof cutting control[J]. Journal of Taiyuan University of Technology,2023,54(4):684-691.
-
期刊类型引用(1)
1. 牛和平, 杜文刚, 张方树, 张玉婷, 左开永. 基于全尺度建模的不连沟煤矿特厚煤层综放开采覆岩运移规律. 六盘水师范学院学报. 2025(03) 百度学术
其他类型引用(0)