Research on coal pillar width and stability control for driving along goaf under hard roofs
-
摘要:
坚硬顶板下沿空掘巷围岩大变形控制是目前煤炭地下安全高效开采的技术难题。目前针对厚硬顶板下沿空掘巷煤柱宽度确定及围岩稳定控制的研究未能充分探讨煤柱稳定性影响因素,尤其忽略了基本顶关键块B回转变形压力的传递效应。针对该问题,以利民煤矿90302工作面运输巷为工程背景,建立了厚硬顶板下煤柱宽度力学模型,推导得出煤柱合理宽度为6.93 m,考虑工程地质条件及施工因素,确定90302运输巷沿空掘巷煤柱宽度为7 m。分析了基本顶关键块B长度,直接顶稳定系数、厚度、回转角度等对煤柱稳定性的影响规律:煤柱稳定性系数随基本顶关键块B长度的增大而减小,随直接顶稳定性系数及其厚度的增大而增大,随煤层内摩擦角和黏聚力的增大而增大。建立UDEC数值计算模型,进一步分析基本顶关键块B长度对7 m煤柱变形、裂隙损伤程度及巷道破坏特征的影响规律:当基本顶关键块B长度为16 m时,90302运输巷两帮及顶板近似呈现对称变形,两帮无明显裂隙产生,围岩稳定程度高。为确保90302运输巷围岩稳定及安全使用,对基本顶关键块B采空区侧悬顶采取水压致裂切顶卸压控制技术,实际应用结果表明: 巷道掘进完成28 d后围岩变形趋于稳定,回采期间顶底板移近量最大值为148 mm,两帮收敛量最大值为196 mm,确保了工作面安全高效回采。
Abstract:Controlling large deformations of surrounding rock in driving along goaf under hard roofs is a technical challenge for safe and efficient underground coal mining. Currently, studies on determining coal pillar width in driving along goaf and surrounding rock stability control under thick-hard roofs fail to thoroughly discuss the influencing factors on pillar stability, especially neglecting the transmission effects of rotational deformation pressure from key block B in the main roof. To address this issue, a mechanical model for coal pillar width under a thick-hard roof was established, with the 90302 haulage roadway in Limin Coal Mine as the engineering background. The model yielded an optimal pillar width of 6.93 m. Considering engineering geological conditions and construction factors, the coal pillar width in driving along goaf for the 90302 haulage roadway was determined to be 7 m. The influence patterns of key block B in the main roof on coal pillar stability were analyzed, including its length, immediate roof stability coefficient, immediate roof thickness, and rotation angle. The coal pillar stability coefficient decreased with a increase in the length of key block B, and increased with an increase in the immediate roof stability coefficient and thickness, and an increase of the friction angle and cohesion within the coal seam. A Universal Distinct Element Code (UDEC) numerical calculation model was also developed to further analyze the influence patterns of key block B length on the deformation, fracture damage degree, and roadway failure characteristics of the 7-meter wide coal pillar. It was found that when key block B was 16 meters long, the two sides and the roof of the 90302 haulage roadway exhibited nearly symmetrical deformation without evident fractures, indicating a high degree of surrounding rock stability. To ensure surrounding rock stability and safe use of 90302 haulage roadway, hydraulic fracturing roof-cutting and pressure-relief control technology was adopted for the side suspended roof of key block B in the main roof. The practical application results demonstrated that surrounding rock deformation stabilized within 28 days after roadway excavation. During the mining period, the maximum roof-to-floor convergence reached 148 mm, and the maximum convergence of the two sides was 196 mm, guaranteeing the safe and effective mining of the working face.
-
-
表 1 煤岩体物理力学参数及几何特征
Table 1 Physical and mechanical parameters and geometric characteristics of coal and rock masses
参数 值 参数 值 直接顶厚度/m 3.0 煤层黏聚力/MPa 1.54 直接顶容重/(kN·m−3) 24.6 煤层内摩擦角/(°) 26.0 直接顶压缩模量/MPa 900.0 关键块B长度/m 20.0 沿空掘巷宽度/m 5.2 关键块B回转角度/(°) 6.7 直接顶回转角度/(°) 4.5 锚杆支护强度/MPa 0.1 直接顶稳定系数 2.4 表 2 模型中块体及节理参数
Table 2 Block and joint parameters in model
岩性 块体参数 节理参数 密度/(kg·m−3) 弹性模量/GPa 泊松比 法向刚度/(GPa·m−1) 切向刚度/(GPa·m−1) 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 砂质泥岩 2560 3.75 0.24 24.80 14.20 2.85 27 2.80 泥岩 2440 3.95 0.25 24.10 18.60 2.90 25 2.42 细砂岩 2520 5.72 0.24 34.71 19.67 4.64 30 3.73 9号煤层 1340 0.35 0.24 19.20 10.40 2.01 24 1.65 砂质页岩 2380 3.45 0.26 25.20 14.20 2.84 27 2.04 -
[1] 李化敏,王文强,王祖洸,等. 特厚煤层沿空掘巷围岩支卸协同控制技术[J]. 煤炭工程,2024,56(2):45-51. LI Huamin,WANG Wenqiang,WANG Zuguang,et al. Surrounding rock control technology with synergetic support and pressure relief for gob-side entry driving in extra-thick coal seam[J]. Coal Engineering,2024,56(2):45-51.
[2] 郝晓琦,韩刚,解嘉豪,等. 鄂尔多斯矿区小煤柱沿空掘巷冲击地压机理[J]. 采矿与岩层控制工程学报,2023,5(2):36-45. HAO Xiaoqi,HAN Gang,XIE Jiahao,et al. Rock burst mechanism of roadway excavation along goaf with small coal pillar in Ordos mining area[J]. Journal of Mining and Strata Control Engineering,2023,5(2):36-45.
[3] 张博,田素川. 沿空巷道顶板结构演化过程及围岩控制技术研究[J]. 煤炭科学技术,2019,47(12):68-75. ZHANG Bo, TIAN Suchuan. Study on roof structureevolution process and surrounding rock controltechnology of gob-side roadway[J]. Coal Science andTechnology,2019,47(12):68-75.
[4] 张修峰, 牟宗龙, 王浩, 等. 沿空巷坚硬顶板走向爆破合理参数研究[J]. 矿业研究与开发,2025,45(5):132-141. ZHANG Xiufeng, MU Zonglong, WANG Hao, et al. Study on reasonable parameters of blasting along hard roof in gob-side roadway[J]. Mining Research and Development,2025,45(5):132-141.
[5] 谭雅五, 赵光明, 程详, 等. 坚硬顶板小煤柱沿空掘巷切顶卸压关键参数研究[J]. 中国安全生产科学技术, 2025, 21(2): 99-107. TAN Yawu, ZHAO Guangming, CHENG Xiang, et al. Study on key parameters of roof cutting and pressure relief in small coal pillar gob-side entry driving with hard roof[J]. Journal of Safety Science and Technology, 2025, 21(2): 99-107.
[6] 耿铭, 孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究[J]. 工矿自动化,2024,50(11):132-141. GENG Ming, SUN Jing. Study on disaster mechanism of thick and hard overhanging roof and top cutting control technology[J]. Journal of Mine Automation,2024,50(11):132-141.
[7] 柏建彪,侯朝炯,黄汉富. 沿空掘巷窄煤柱稳定性数值模拟研究[J]. 岩石力学与工程学报,2004(20):3475-3479. DOI: 10.3321/j.issn:1000-6915.2004.20.015 BAI Jianbiao,HOU Chaojiong,HUANG Hanfu. Numerical simulation study on stability of narrow coal pillar of roadway driving along goaf[J]. Chinese Journal of Rock Mechanics and Engineering,2004(20):3475-3479. DOI: 10.3321/j.issn:1000-6915.2004.20.015
[8] 孙利辉,丁斌,李旺军,等. 芦子沟矿厚煤层沿空掘巷窄煤柱宽度优化及应用[J]. 采矿与安全工程学报,2023,40(6):1151-1160. SUN Lihui,DING Bin,LI Wangjun,et al. Width optimization and application of narrow coal pillar in gob-side entry driven in thick coal seam in Luzigou Mine[J]. Journal of Mining & Safety Engineering,2023,40(6):1151-1160.
[9] 霍丙杰,孟繁禄,李天航,等. 多层坚硬顶板特厚煤层综放工作面小煤柱护巷技术[J]. 煤炭科学技术,2024,52(3):13-23. HUO Bingjie,MENG Fanlu,LI Tianhang,et al. Small coal pillar technology in fully-mechanized top-coal caving face of multi layer hard roof and extra thick coal seam[J]. Coal Science and Technology,2024,52(3):13-23.
[10] 张金贵,程志恒,陈昊熠,等. 区段煤柱留设宽度分析及优化——以崖窑峁煤矿为例[J]. 煤炭科学技术,2022,50(10):60-67. ZHANG Jingui,CHENG Zhiheng,CHEN Haoyi,et al. Analysis and optimization of remaining width of coal pillars in the section of Yayaomao Coal Mine[J]. Coal Science and Technology,2022,50(10):60-67.
[11] 周礼杰,陈亮,程志恒,等. 突出厚煤层沿空掘巷煤柱留设宽度优化研究[J]. 煤炭科学技术,2022,50(3):92-101. ZHOU Lijie,CHEN Liang,CHENG Zhiheng,et al. Study on optimization of coal pillar width of gob-side entry driving in thick coal seam with gas outburst[J]. Coal Science and Technology,2022,50(3):92-101.
[12] 侯朝炯,李学华. 综放沿空掘巷围岩大、小结构的稳定性原理[J]. 煤炭学报,2001,28(1):1-7. DOI: 10.3321/j.issn:0253-9993.2001.01.001 HOU Chaojiong,LI Xuehua. Stability principle of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face[J]. Journal of China Coal Society,2001,28(1):1-7. DOI: 10.3321/j.issn:0253-9993.2001.01.001
[13] BAI Jianbiao,SHEN Wenlong,GUO Guanlong,et al. Roof deformation,failure characteristics,and preventive techniques of gob-side entry driving heading adjacent to the advancing working face[J]. Rock Mechanics and Rock Engineering,2015,48(6):2447-2458. DOI: 10.1007/s00603-015-0713-2
[14] 陆银龙,韩磊,吴开智,等. 特厚煤层沿空掘巷力源结构特征与围岩协同控制策略[J]. 中国矿业大学学报,2024,53(2):238-249. LU Yinlong,HAN Lei,WU Kaizhi,et al. Characteristics of stress sources and comprehensive control strategies for surrounding rocks of gob-side driving entry in extra thick coal seam[J]. Journal of China University of Mining & Technology,2024,53(2):238-249.
[15] 赵高明,涂敏,张向阳,等. 沿空巷道侧向结构切顶卸压角度研究[J]. 矿业研究与开发,2023,43(2):108-115. ZHAO Gaoming,TU Min,ZHANG Xiangyang,et al. Research on roof cutting and pressure relief angle of lateral structure in gob-side entry[J]. Mining Research and Development,2023,43(2):108-115.
[16] 许磊,李明伟,郭亮,等. 切近位关键层卸压沿空掘巷关键参数与工程应用[J]. 采矿与安全工程学报,2023,40(1):91-100. XU Lei,LI Mingwei,GUO Liang,et al. Key parameters and engineering application of roof cutting and pressure relief driving in cutting lower key stratum[J]. Journal of Mining & Safety Engineering,2023,40(1):91-100.
[17] 张百胜,王朋飞,崔守清,等. 大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J]. 煤炭学报,2021,46(7):2254-2267. ZHANG Baisheng,WANG Pengfei,CUI Shouqing,et al. Mechanism and surrounding rock control of roadway driving along gob in shallow-buried,large mining height and small coal pillars by roof cutting[J]. Journal of China Coal Society,2021,46(7):2254-2267.
[18] WU Wenda,BAI Jianbiao,WANG Xiangyu,et al. Numerical study of failure mechanisms and control techniques for a gob-side yield pillar in the Sijiazhuang Coal Mine,China[J]. Rock Mechanics and Rock Engineering,2019,52(4):1231-1245. DOI: 10.1007/s00603-018-1654-3
[19] WU Bowen,WANG Xiangyu,BAI Jianbiao,et al. Study on crack evolution mechanism of roadside backfill body in gob-side entry retaining based on UDEC trigon model[J]. Rock Mechanics and Rock Engineering,2019,52(9):3385-3399. DOI: 10.1007/s00603-019-01789-6
[20] 赵善坤,赵阳,王寅,等. 采动巷道侧向高低位厚硬顶板 破 断 模 式 试 验 研 究[J]. 煤 炭 科 学 技 术,2021,49(4):111-120. ZHAO Shankun, ZHAO Yang, WANG Yin, et al. Experimental study on fracture mode of lateral high andlow thick and hard roof in mining roadway[J]. CoalScience and Technology,2021,49(4):111-120.
[21] 彭林军,吴家遥,何满潮,等. 深部特厚煤层综放沿空掘巷煤柱优化及巷道支护[J]. 西安科技大学学报,2024,44(3):563-574. PENG Linjun,WU Jiayao,HE Manchao,et al. Optimization of coal pillar and tunnel support for fully mechanized caving along gob in deep and extra thick coal seams[J]. Journal of Xi'an University of Science and Technology,2024,44(3):563-574.
-
期刊类型引用(0)
其他类型引用(2)