Temperature-pressure coupling effect on gas desorption test in soft and hard stratified coal from the Qianxi mining area
-
摘要:
煤层瓦斯解吸特性对矿井瓦斯涌出规律和煤层气开发有重要影响,煤层温度和压力变化对软硬分层煤瓦斯解吸有明显控制作用。贵州黔西矿区煤层大多属于高瓦斯近距离突出煤层群,软硬结合较多,且煤层透气性低。为进一步明确该地区煤层瓦斯解吸特性,以贵州黔西典型矿区小屯煤矿和青龙煤矿软硬分层煤为研究对象,利用HCA型高压容量法吸附装置对软硬分层煤进行不同温度、压力下的瓦斯解吸特征试验研究,对比分析温度、压力耦合变化对软硬分层煤瓦斯解吸特征的影响。结果表明:同一煤样温度、压力越高,瓦斯解吸初速度越大,对于0~120 s内的初始瓦斯解吸,瓦斯压力不占主导作用;软分层煤初始瓦斯解吸速率大于硬分层煤,硬分层煤累计瓦斯解吸量大于软分层煤,硬分层煤累计瓦斯解吸量最快在540 s内超过软分层煤;煤体暴露后60 s内含煤瓦斯解吸量变化最剧烈,且软分层煤前60 s解吸量所占比例大于硬分层煤,解吸更“活跃”;瓦斯解吸速率随压力的增加而升高,解吸速率可划分为3个阶段,即0~60 s为“解吸爆炸期”,60~1 500 s为“解吸跳跃期”,1 500~7 200 s为“解吸稳定期”;软分层煤中值解吸时间受温度、压力影响大于硬分层煤,软分层煤瓦斯解吸主要集中在煤炭暴露后1 800 s内。
Abstract:The gas desorption characteristics in coal seams play a significant role in understanding gas emission patterns in mines and in coalbed methane development. Variations in coal seam temperature and pressure significantly control gas desorption in coal seams with soft and hard coal stratification. Most of the coal seams in the Qianxi mining area of Guizhou Province have high gas content, closely spaced layers, and are prone to outbursts, with a combination of soft and hard layers and low permeability. To further clarify the gas desorption characteristics of these coal seams, the study focused on coal from layers with soft and hard stratification in the Xiaotun and Qinglong coal mines, which are typical in the Qianxi mining area. Gas desorption experiments under varying temperatures and pressures were conducted using an HCA high-pressure volumetric gas adsorption device. The impact of temperature-pressure coupling on gas desorption characteristics of coal samples from layers with soft and hard stratification was comparatively analyzed. The results showed that for the same coal sample, higher temperature and pressure led to a greater initial gas desorption rate. Within 0-120 s of initial desorption, gas pressure played a less dominant role. The initial gas desorption rate of coal in soft layers was higher than that of hard layers, while the cumulative gas desorption amount of coal samples in hard layers exceeded that of soft layers. The cumulative desorption amount of samples in hard layers surpassed that of soft layers within 540 s. The most significant changes in gas desorption occurred within the first 60 s of coal exposure, with coal in soft layers exhibiting a higher proportion of desorbed gas during this period, making it more "active" in desorption. The gas desorption rate increased with pressure and could be divided into three stages: explosion stage (0-60 s), leap stage (60-1 500 s), and stabilization stage (1 500-7 200 s). The median desorption time of coal samples in soft layers was more significantly influenced by temperature and pressure compared to samples in hard layers, with gas desorption in soft layers occurring primarily within the first 1 800 s after coal exposure.
-
0. 引言
贵州煤炭资源丰富,煤层赋存条件复杂,煤矿瓦斯灾害较严重,煤与瓦斯突出事故时有发生。大量煤与瓦斯突出事故实例和研究表明,煤与瓦斯突出的发生与地质构造有密切联系[1-3]。前人对软硬分层煤与瓦斯突出机理进行了研究,认为软硬分层非同步变形导致煤层失稳诱发突出,提出了软硬分层煤与瓦斯突出支撑体模型,揭示了软硬分层非同步变形诱导煤与瓦斯突出机理[4];也有学者从煤体孔隙结构、煤体吸附−解吸规律、瓦斯赋存条件等方面对煤与瓦斯突出进行研究,认为煤是一种非均质多孔介质,其丰富的内部孔隙结构既是瓦斯气体吸附储存的主要场所,更是气体扩散、渗流的主要通道,煤体内部吸附态瓦斯在构造挤压或受外力扰动时解吸,导致瓦斯压力上升,为煤与瓦斯突出事故发生提供了能量前提[5-9]。
贵州地区经历燕山等多期次构造运动,多期次构造叠加使得煤储层构造变形强烈、构造复杂,不同矿区、煤阶、煤层,甚至同一矿井同一煤层不同工作面宏观和微观结构都会存在差异,且在温度、压力、水分、粒度等因素互相作用下,煤体瓦斯解吸能力也截然不同[10-16]。贵州黔西矿区煤层赋存具有层数多、厚度薄、间距小的特点,大多属于高瓦斯近距离突出煤层群,煤层常出现合并、分岔现象,软硬结合较多,煤层变质程度不一,且煤层透气性低[17-18]。在黔西贵州大方煤业有限公司小屯煤矿、贵州黔西能源开发有限公司青龙煤矿采掘过程中,软硬分层构造煤吸附瓦斯涌出量大、瓦斯涌出规律复杂,煤层软硬分层吸附瓦斯性能的差异不仅对煤层原始瓦斯赋存特征有显著影响,还将影响煤巷掘进和瓦斯抽采过程中煤体内瓦斯流场的分布,温度、压力变化会对软硬分层煤体孔隙演化、瓦斯赋存及流场产生影响,最终影响工作面瓦斯涌出。
针对小屯煤矿与青龙煤矿的软硬分层煤样,在不同温度与压力条件下进行瓦斯解吸试验研究,对比温度、压力耦合作用下软分层、硬分层煤体解吸特征,研究软硬分层煤解吸特性影响因素及影响规律,揭示软硬分层煤瓦斯解吸特性规律,以期为黔西矿区典型矿井瓦斯灾害防治及煤层气开采利用提供支撑。
1. 试验方法与过程
1.1 样品采集与制备
试验样品分别取自小屯煤矿6号煤层工作面100 m处软分层和硬分层、青龙煤矿16号煤层遇断层软分层和硬分层。根据GB/T 212-2008《煤的工业分析方法》制备煤样,煤样工业分析结果见表1。
表 1 煤样工业分析结果Table 1. Industrial analysis results of coal samples煤样名称 水分/% 灰分/% 挥发分/% 视密度/(g·cm−3) 瓦斯放散初速度/(mL·s−1) 瓦斯扩散初速度/(mL·s−1) 坚固性系数 破坏类型 青龙煤矿
软分层煤3.42 22.96 8.75 1.54 15.209 1.520 0.780 Ⅳ—Ⅴ 青龙煤矿
硬分层煤2.18 10.06 7.14 1.43 10.053 0.850 1.223 Ⅲ—Ⅳ 小屯煤矿
软分层煤3.58 19.99 7.86 1.49 19.779 2.100 0.303 Ⅳ—Ⅴ 小屯煤矿
硬分层煤1.66 12.86 6.59 1.48 12.533 1.018 0.707 Ⅲ—Ⅳ 1.2 试验方法与步骤
试验选用HCA型高压容量法吸附装置。将煤样粉碎并称量50 g装入干燥器皿。试验时,首先调节恒温水域温度至(25±1)℃,向充气罐中充入一定量浓度为99.99%的高纯瓦斯,关闭瓦斯罐阀门,煤样罐与充气罐和瓦斯压力数据采集仪相连,打开煤样罐阀门,向煤样罐中充入设定压力的瓦斯气体,关闭煤样罐阀门,并放入恒温水域中,让煤样在设定温度下充分吸附瓦斯。通过瓦斯压力数据采集仪观察罐内瓦斯压力,当小于设定值时立即向煤样罐中通气,多次向煤样罐补气,直到煤样吸附到设定的瓦斯压力。试验前60 s,每10 s读取并记录1次数据;60~1 800 s,每60 s读取并记录1次数据;1 800~3 600 s,每300 s读取并记录1次数据;3 600~7 200 s,每600 s读取并记录1次数据。
2. 试验结果分析
2.1 温度对瓦斯解吸的影响
设瓦斯压力为1.5 MPa,分别在20,30,40 ℃下对不同煤样进行瓦斯解吸试验,结果如图1和图2所示。可看出,软分层煤与硬分层煤的瓦斯解吸温度越高,相同时间段内的瓦斯解吸总量越大。主要是因为温度越高,甲烷分子间碰撞和运动越激烈,甲烷吸附能力减弱,吸附状态瓦斯减少,游离状态瓦斯增多,瓦斯解吸总量增大。软分层煤前120 s的累计瓦斯解吸量超过7 200 s内累计瓦斯解吸量的20%,且软分层煤的累计瓦斯解吸量小于硬分层煤,主要是因为软分层煤内部构造比硬分层煤复杂,孔隙较硬分层煤发育,孔容、表面积比硬分层煤大,解吸初期瓦斯解吸运移通道较硬分层煤多;前120 s软硬分层煤在30 ℃时累计瓦斯解吸量占7 200 s内累计瓦斯解吸量的比例大,说明在瓦斯解吸初期,累计瓦斯解吸量占比除受温度影响外,还受压力等因素影响,且温度不占主导作用。软分层煤的累计瓦斯中值解吸时间[19](7 200 s内超过解吸总量50%的时间)短于硬分层煤,且随着温度升高,累计瓦斯中值解吸时间提前。由于解吸是逐渐变慢的过程,累计瓦斯中值解吸时间可以从另外一个维度表征解吸的快慢,随着温度升高,软分层煤内部孔隙结构变化、内部孔隙连通更多,解吸速率大于硬分层煤,这解释了煤矿井下工作面推进过程中遇软分层煤时工作面瓦斯浓度增加,与硬分层煤相比更容易出现瓦斯超限,为煤矿井下瓦斯治理提供了基础。
2.2 压力对瓦斯解吸的影响
设温度为25 ℃,瓦斯压力分别为0.74,1.50,3.00 MPa,进行瓦斯解吸试验,结果如图3和图4所示。可看出,温度一定时,对于同一煤样,压力越大,瓦斯解吸初速度越大,累计瓦斯解吸量也越大,即煤矿井下瓦斯压力越大,井下瓦斯解吸量也越大,表明随着开采深度增加,煤与瓦斯突出危险性增大。
不同瓦斯压力下试验煤样瓦斯解吸统计见表2。结合图3、图4和表2可知,0~120 s,无论软分层煤还是硬分层煤,累计瓦斯解吸量占7 200 s内累计瓦斯解吸量的比例随着瓦斯压力的增大而降低,说明瓦斯解吸初期瓦斯压力并不占主导作用;0~120 s,软分层煤的累计瓦斯解吸量均超过7 200 s内累计瓦斯解吸量的25%,表明该阶段内软分层煤的解吸速率快,随着解吸时间延长,硬分层煤累计解吸量逐渐大于软分层煤累计解吸量,软分层煤的中值解吸时间均早于硬分层煤的中值解吸时间,主要因为软分层煤中含有较多的中孔和大孔,而高角度交联的中孔和大孔为瓦斯提供了运移通道,所以在瓦斯解吸初期,软分层煤的平均瓦斯解吸速度大于硬分层煤。
表 2 不同瓦斯压力下试验煤样瓦斯解吸统计Table 2. Statistics of gas desorption of experimental coal samples at different gas pressures煤样 瓦斯压力/MPa 0~120 s 0~600 s 0~1 800 s 中值解吸时间/s 解吸量/(mL·g−1) 比例% 解吸量/(mL·g−1) 比例% 解吸量/(mL·g−1) 比例% 小屯煤矿
软分层煤0.74 2.526 31.89 4.659 58.84 6.446 81.40 420 1.50 2.995 30.71 5.977 61.3 8.123 83.30 360 3.00 3.174 27.63 6.288 54.73 8.932 77.75 480 小屯煤矿
硬分层煤0.74 2.380 22.85 4.896 47.02 7.507 72.09 720 1.50 2.709 21.76 5.539 44.50 8.699 69.88 780 3.00 3.161 21.63 6.811 46.59 10.477 71.68 720 青龙煤矿
软分层煤0.74 2.127 29.04 3.78 51.60 5.482 74.84 600 1.50 2.420 27.30 4.434 50.03 6.499 73.31 600 3.00 2.814 27.27 5.095 49.38 7.438 72.09 660 青龙煤矿
硬分层煤0.74 1.440 18.30 2.984 37.91 4.955 62.96 1 080 1.50 1.788 17.60 4.012 39.48 6.557 64.52 960 3.00 2.139 17.35 4.722 38.29 7.808 63.32 1 080 单位时间内的瓦斯解吸量(解吸速率)随压力的增加而升高,根据解吸速率快慢及曲线表征(图5),解吸速率分3个阶段:前60 s为“解吸爆炸期”,60~1 500 s为“解吸跳跃期”,1 500~7 200 s为“解吸稳定期”。在相同瓦斯压力下,0~120 s内,软分层煤的瓦斯解吸量是硬分层煤的1.004~1.477倍,占比是硬分层煤的1.154~1.587倍。其原因主要是在煤层瓦斯解吸过程中,初始时刻吸附在靠近煤基质外表面瓦斯先脱附,且软分层煤孔隙表面积大,脱附解吸瓦斯多,软分层煤的累计孔容大于硬分层煤,为瓦斯初期的快速解吸提供了有利条件,出现“爆炸式”瞬时增量。而远离煤基质外表面的内部孔隙中的气体则需要更长的脱附解吸运移路径,同时当部分气体从煤基质中扩散出来时,孔隙中的气体压力降低,从而使煤基质收缩孔隙变化,导致瓦斯运移通道变窄或减少,解吸速率在一定水平范围上下波动“跳跃”,最后随时间变化趋于稳定。依据 Fick 扩散定律,单位时间内煤层瓦斯分子的扩散通量与瓦斯浓度梯度呈正相关,由于解吸压力增大,煤体内外的瓦斯浓度梯度减小,所以煤体的极限解吸量及解吸率有所降低[20]。
2.3 温度−压力耦合对瓦斯解吸的影响
设置温度分别为20,25,30,40 ℃,瓦斯压力分别为0.74,1.50,3.00 MPa,进行瓦斯解吸试验,结果如图6和图7所示。
在相同试验条件下,同一矿区硬分层煤累计瓦斯解吸量大于软分层煤,软分层煤的瓦斯解吸初速度大于硬分层煤。软分层煤的瓦斯解吸初速度为8.856~18.749 mL/(g·min),而硬分层煤的瓦斯解吸初速度为3.083~16.504 mL/(g·min),软分层煤的瓦斯解吸初速度是硬分层煤的1.136~2.873倍,即软分层煤在煤体暴露卸压初始时刻瞬时瓦斯涌出量较大,在井下煤层开采过程中软分层附近工作面瓦斯涌出量较大,同时煤与瓦斯突出的危险性较大。主要原因是软分层煤比硬分层煤具有更多的开放孔和墨水瓶型孔,导致软分层煤的连通度高于硬分层煤[10]。在煤矿井下瓦斯治理过程中,对硬分层煤预抽瓦斯时间应大于软分层煤,同时在瓦斯抽采孔径及间距布局方面,软分层煤瓦斯抽采孔径应大于硬分层煤,抽采半径应小于硬分层煤,以提高瓦斯抽采效率[21]。
30 ℃下不同煤样解吸对比如图8所示。其中a1−a4分别为0~60,60~
1800 ,1800 ~3600 ,3600 ~7200 s内的瓦斯解吸量;b1−b4分别为0~60,60~1800 ,1800 ~3600 ,3600 ~7200 s内所占的比例。可看出,含煤瓦斯解吸量在煤体暴露前60 s内变化最剧烈,且软分层煤前60 s瓦斯解吸量所占比例比硬分层煤大,解吸更“活跃”;青龙煤矿软分层煤0~60 s内的瓦斯解吸量是硬分层煤的1.575~1.792倍,所占比例是硬分层煤的1.594~1.900倍;小屯煤矿软分层煤0~60 s内的瓦斯解吸量是硬分层煤的1.062~1.360倍,所占比例是硬分层煤的1.484~1.554倍;随着瓦斯压力和温度的增大,其对硬分层煤累计瓦斯解吸速率的影响大于软分层煤,硬分层煤瓦斯解吸量超过软分层煤瓦斯解吸量的时间随之缩短,40 ℃、3 MPa下小屯煤矿煤样最快在540 s时硬分层煤累计瓦斯解吸量大于软分层煤。3. 结论
1) 0~120 s内,无论软分层煤还是硬分层煤,累计瓦斯解吸量占7 200 s累计瓦斯解吸量的比例随着瓦斯压力的升高而降低,瓦斯压力不占解吸主导作用。
2) 试验煤样所在矿井开采过程中,对硬分层煤瓦斯预抽时间应长于软分层煤;软分层煤瓦斯抽采孔径应大于硬分层煤,抽采半径应小于硬分层煤;抽采负压可根据不同解吸特性由小向大逐步调节,提高抽采效率。软分层煤初期瓦斯解吸速率快、解吸量大,瞬时瓦斯涌出多,易造成瓦斯超限甚至瓦斯喷出或突出,与硬分层煤相比,软分层煤开采时应进一步强化瓦斯治理措施。
3) 试验煤样单位时间内的瓦斯解吸量(解吸速率)随压力的增加而升高,解吸速率分3个阶段,前60 s为“解吸爆炸期”,60~1 500 s为“解吸跳跃期”,1 500~7 200 s为“解吸稳定期”。
4) 试验煤样软分层煤与硬分层煤的瓦斯解吸温度越高,相同时间段内的瓦斯解吸总量越大,软分层煤前120 s内的累计瓦斯解吸量均超过7 200 s累计瓦斯解吸量的1/5以上。软分层煤的累计瓦斯中值解吸时间早于硬分层解煤,且随着温度升高,累计瓦斯中值解吸时间提前。
5) 试验煤样同一矿区硬分层煤累计瓦斯解吸量大于软分层煤,软分层煤的瓦斯解吸初速度大于硬分层煤;随着瓦斯压力和温度增加,其对硬分层煤累计瓦斯解吸速率的影响大于软分层煤,硬分层煤解吸量超过软分层煤解吸量的时间随之缩短,40 ℃、3 MPa下小屯煤矿煤样最快在540 s时硬分层煤累计瓦斯解吸量大于软分层煤。
-
表 1 煤样工业分析结果
Table 1 Industrial analysis results of coal samples
煤样名称 水分/% 灰分/% 挥发分/% 视密度/(g·cm−3) 瓦斯放散初速度/(mL·s−1) 瓦斯扩散初速度/(mL·s−1) 坚固性系数 破坏类型 青龙煤矿
软分层煤3.42 22.96 8.75 1.54 15.209 1.520 0.780 Ⅳ—Ⅴ 青龙煤矿
硬分层煤2.18 10.06 7.14 1.43 10.053 0.850 1.223 Ⅲ—Ⅳ 小屯煤矿
软分层煤3.58 19.99 7.86 1.49 19.779 2.100 0.303 Ⅳ—Ⅴ 小屯煤矿
硬分层煤1.66 12.86 6.59 1.48 12.533 1.018 0.707 Ⅲ—Ⅳ 表 2 不同瓦斯压力下试验煤样瓦斯解吸统计
Table 2 Statistics of gas desorption of experimental coal samples at different gas pressures
煤样 瓦斯压力/MPa 0~120 s 0~600 s 0~1 800 s 中值解吸时间/s 解吸量/(mL·g−1) 比例% 解吸量/(mL·g−1) 比例% 解吸量/(mL·g−1) 比例% 小屯煤矿
软分层煤0.74 2.526 31.89 4.659 58.84 6.446 81.40 420 1.50 2.995 30.71 5.977 61.3 8.123 83.30 360 3.00 3.174 27.63 6.288 54.73 8.932 77.75 480 小屯煤矿
硬分层煤0.74 2.380 22.85 4.896 47.02 7.507 72.09 720 1.50 2.709 21.76 5.539 44.50 8.699 69.88 780 3.00 3.161 21.63 6.811 46.59 10.477 71.68 720 青龙煤矿
软分层煤0.74 2.127 29.04 3.78 51.60 5.482 74.84 600 1.50 2.420 27.30 4.434 50.03 6.499 73.31 600 3.00 2.814 27.27 5.095 49.38 7.438 72.09 660 青龙煤矿
硬分层煤0.74 1.440 18.30 2.984 37.91 4.955 62.96 1 080 1.50 1.788 17.60 4.012 39.48 6.557 64.52 960 3.00 2.139 17.35 4.722 38.29 7.808 63.32 1 080 -
[1] 张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016 ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial-temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016
[2] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297-322. WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297-322.
[3] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716-725. YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716-725.
[4] 宋大钊,郭明功,杨港,等. 支撑体软硬煤分层非同步变形诱发煤与瓦斯突出机理[J]. 煤炭科技,2023,44(3):1-8. SONG Dazhao,GUO Minggong,YANG Gang,et al. Mechanism of coal and gas outburst induced by asynchronous deformation of soft and hard coal layer in the support body[J]. Coal Science & Technology Magazine,2023,44(3):1-8.
[5] 李博. 软硬煤瓦斯放散初期规律及孔隙结构差异研究[D]. 湘潭:湖南科技大学,2023. LI Bo. Study on the initial law of gas emission and the difference of pore structure between soft and hard coal[D]. Xiangtan:Hunan University of Science and Technology,2023.
[6] 程波,张仰强,徐斌,等. 煤层软硬分层吸附瓦斯性能差异性及其对瓦斯赋存的影响[J]. 矿业安全与环保,2020,47(2):25-28,34. CHENG Bo,ZHANG Yangqiang,XU Bin,et al. Difference of gas adsorption performance between soft and hard layers of coal seam and its influence on gas occurrence[J]. Mining Safety & Environmental Protection,2020,47(2):25-28,34.
[7] 杨孝波,许江,周斌,等. 煤与瓦斯突出发生前后煤层温度演化规律研究[J]. 采矿与安全工程学报,2021,38(1):206-214. YANG Xiaobo,XU Jiang,ZHOU Bin,et al. Evolution law of coal seam temperature before and after coal and gas outburst[J]. Journal of Mining & Safety Engineering,2021,38(1):206-214.
[8] 李树刚,周雨璇,胡彪,等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743 LI Shugang,ZHOU Yuxuan,HU Biao,et al. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology & Exploration,2023,51(2):127-136. DOI: 10.12363/issn.1001-1986.22.09.0743
[9] 范家文,刘健. 煤体解吸甲烷规律及解吸后微结构特征研究[J]. 煤炭工程,2021,53(2):147-152. FAN Jiawen,LIU Jian. Law of methane desorption in coal and microstructure characteristics of coal after desorption[J]. Coal Engineering,2021,53(2):147-152.
[10] 刘彦伟,张帅,左伟芹,等. 典型软硬煤全孔径孔隙结构差异性研究[J]. 煤炭科学技术,2021,49(10):98-106. LIU Yanwei,ZHANG Shuai,ZUO Weiqin,et al. Study on differences of pore structure of typical soft and hard coal[J]. Coal Science and Technology,2021,49(10):98-106.
[11] 张建国,周红星,李喜员,等. 构造煤孔隙结构对瓦斯解吸及钻屑瓦斯解吸指标影响[J]. 西安科技大学学报,2021,41(1):36-45. ZHANG Jianguo,ZHOU Hongxing,LI Xiyuan,et al. Influence of pore structure of tectonic coal on gas desorption and gas desorption index of drilling cuttings[J]. Journal of Xi'an University of Science and Technology,2021,41(1):36-45.
[12] 马兴莹,龚选平,成小雨,等. 不同粒径混合煤样瓦斯解吸动力特性研究[J]. 工矿自动化,2023,49(8):142-147. MA Xingying,GONG Xuanping,CHENG Xiaoyu,et al. Study on gas desorption dynamic features of mixed coal samples with different particle sizes[J]. Journal of Mine Automation,2023,49(8):142-147.
[13] 张永强,韩志雄,薛海军,等. 西南典型矿区煤等温吸附/解吸影响因素研究[J]. 煤炭工程,2019,51(6):18-23. ZHANG Yongqiang,HAN Zhixiong,XUE Haijun,et al. Impact factors on gas adsorption and desorption of typical mining area in southwest China[J]. Coal Engineering,2019,51(6):18-23.
[14] 李希建,薛海腾,陈刘瑜,等. 贵州地区突出煤层微孔结构及对瓦斯流动特性的影响[J]. 煤炭科学技术,2020,48(10):67-74. LI Xijian,XUE Haiteng,CHEN Liuyu,et al. Micropore structure of outburst coal seam in Guizhou Area and its effect on gas flow[J]. Coal Science and Technology,2020,48(10):67-74.
[15] 李希建,陈刘瑜,刘钰. 温度对构造煤解吸初期规律实验研究[J]. 矿业研究与开发,2019,39(6):73-75. LI Xijian,CHEN Liuyu,LIU Yu. Experimental study on influence laws of temperature on tectonic coal desorption in initial stage[J]. Mining Research and Development,2019,39(6):73-75.
[16] 孙际宏. 象山矿3#、5#煤孔隙瓦斯解吸特性与瓦斯赋存规律研究[D]. 廊坊:华北科技学院,2022. SUN Jihong. Study on pore gas desorption characteristics and gas occurrence law of 3# and 5# coal seam in Xiangshan Mine[D]. Langfang:North China Institute of Science and Technology,2022.
[17] 薛海腾,李希建,陈刘瑜,等. 黔西突出煤的微观孔隙分形特征及其对渗透率的影响[J]. 煤炭科学技术,2021,49(3):118-122. XUE Haiteng,LI Xijian,CHEN Liuyu,et al. Micro-pore fractal characteristics of outburst coal in Western Guizhou and its influence on permeability[J]. Coal Science and Technology,2021,49(3):118-122.
[18] 李希建,沈仲辉,刘钰,等. 黔西北构造煤与原生结构煤孔隙结构对吸解特性影响实验研究[J]. 采矿与安全工程学报,2017,34(1):170-176. LI Xijian,SHEN Zhonghui,LIU Yu,et al. The experimental research on the impact of pore structure in tectonic coal and primary structure coal on gas adsorption-desorption characteristics in northwestern Guizhou[J]. Journal of Mining & Safety Engineering,2017,34(1):170-176.
[19] 翟迎铨,宋党育,李云波. 温度压力对煤中甲烷解吸速率影响的试验研究[J]. 煤炭科学技术,2024,52(增刊1):80-85. ZHAI Yingquan,SONG Dangyu,LI Yunbo. Experimental study of effect of temperature and pressure on the desorption rate of coal bed methane[J]. Coal Science and Technology,2024,52(S1):80-85.
[20] 梁跃辉. 带压环境下含瓦斯煤解吸特性实验研究[D]. 淮南:安徽理工大学,2024. LIANG Yuehui. Experimental study on desorption characteristics of gasbearing coal under pressure environment[D]. Huainan:Anhui University of Science & Technology,2024.
[21] 刘殿平,马文伟. 瓦斯抽采钻孔有效抽采半径测定方法研究[J]. 工矿自动化,2020,46(11):59-64. LIU Dianping,MA Wenwei. Research on determination method of effective drainage radius of gas drainage borehole[J]. Industry and Mine Automation,2020,46(11):59-64.