带式输送机回程托辊卡死故障摩擦升温实验研究

梁运涛, 张鹏成, 孙勇, 贾宝山, 崔鑫峰, 王睿德

梁运涛,张鹏成,孙勇,等. 带式输送机回程托辊卡死故障摩擦升温实验研究[J]. 工矿自动化,2025,51(1):95-103. DOI: 10.13272/j.issn.1671-251x.2024100010
引用本文: 梁运涛,张鹏成,孙勇,等. 带式输送机回程托辊卡死故障摩擦升温实验研究[J]. 工矿自动化,2025,51(1):95-103. DOI: 10.13272/j.issn.1671-251x.2024100010
LIANG Yuntao, ZHANG Pengcheng, SUN Yong, et al. Experimental study on frictional heating due to return idler seizure failure in belt conveyors[J]. Journal of Mine Automation,2025,51(1):95-103. DOI: 10.13272/j.issn.1671-251x.2024100010
Citation: LIANG Yuntao, ZHANG Pengcheng, SUN Yong, et al. Experimental study on frictional heating due to return idler seizure failure in belt conveyors[J]. Journal of Mine Automation,2025,51(1):95-103. DOI: 10.13272/j.issn.1671-251x.2024100010

带式输送机回程托辊卡死故障摩擦升温实验研究

基金项目: 国家自然科学基金资助项目(52174229)。
详细信息
    作者简介:

    梁运涛(1974—),男,河北晋州人,研究员,博士,博士研究生导师,主要从事煤矿火灾防治理论与技术等方面的研究工作,E-mail:liangyuntao@vip.sina.com

    通讯作者:

    孙勇(1979—),男,辽宁沈阳人,教授,研究员,博士,硕士研究生导师,研究方向为煤矿火灾防治理论与技术,E-mail:nescafeandy@126.com

  • 中图分类号: TD752/634

Experimental study on frictional heating due to return idler seizure failure in belt conveyors

  • 摘要:

    回程托辊卡死是导致带式输送机火灾的主要原因之一。为研究带式输送机回程托辊卡死故障摩擦升温特性,采用平台实验与数值模拟相结合的方法,研究了输送带速度、巷道风速和环境温度对卡死回程托辊温度的影响,结果表明:卡死回程托辊温度随环境温度和输送带速度的增加而显著升高,温度达到稳态的时间延长;巷道风速的提高有效降低了卡死回程托辊温度并缩短了温度达到稳态的时间。考虑到输送带磨穿卡死的回程托辊导致托辊内部煤粉积聚并引发火灾的情况,进一步研究了输送带速度、巷道风速、环境温度及卡死回程托辊内煤粉积存比例(煤粉在托辊内部积存体积与托辊可容纳煤粉最大体积之比)对煤粉最高温度的影响,结果表明:输送带速度、巷道风速和环境温度对卡死回程托辊内煤粉最高温度的影响,与对卡死回程托辊温度的影响规律一致;卡死回程托辊内煤粉积存比例的增加会加剧煤粉温度的升高;在环境温度为20 ℃、输送带速度为3.5 m/s、巷道风速为1 m/s、100%煤粉积存比例的工况下,煤粉最高温度达87.5 ℃,较25%煤粉积存比例时升高了43.2 ℃,高于中低阶煤的自燃临界温度,火灾风险显著增加。

    Abstract:

    Seized return idlers are one of the main causes of fire in belt conveyors. To investigate the frictional heating characteristics of seized return idlers in belt conveyors, a combination of platform experiments and numerical simulations was used to study the effects of conveyor belt speed, roadway airflow velocity, and ambient temperature on the temperature of the seized return idlers. The results indicated that the temperature of the seized return idler increased significantly with the rise in ambient temperature and conveyor belt speed, and the time required to reach thermal equilibrium was prolonged. An increase in roadway airflow velocity effectively reduced the temperature of the seized return idlers and shortened the time to reach thermal equilibrium. To further assess the fire risk from coal dust accumulation within stuck rollers due to belt wear, the study explored the effects of conveyor belt speed, roadway airflow velocity, ambient temperature, and coal dust accumulation ratio in the seized return idlers (defined as the ratio of accumulated coal dust volume to the maximum capacity of coal dust volume in the idlers) on the maximum temperature of the coal dust. The results revealed that the effects of conveyor belt speed, roadway airflow velocity, and ambient temperature on the maximum temperature of coal dust in the seized return idlers were consistent with their effects on seized roller temperature. Additionally, an increase in the coal dust accumulation ratios in the seized return idlers resulted in a more significant rise in coal dust temperature. Under conditions of an ambient temperature of 20 °C, conveyor belt speed of 3.5 m/s, roadway airflow velocity of 1 m/s, and a 100% coal dust accumulation ratio, the maximum temperature of coal dust reached 87.5°C, which was 43.2 °C higher than that at a 25% accumulation ratio. This temperature exceeded the threshold value of spontaneous combustion for low- to medium-grade coal, indicating a substantial increase in fire risk.

  • 图  1   带式输送机火灾模拟系统

    Figure  1.   Fire simulation system for belt conveyor

    图  2   外因火灾事故模拟巷道

    Figure  2.   Simulation roadway for externally caused fire

    图  3   测点布置

    Figure  3.   Arrangement of measurement points

    图  4   不同工况下平台实验数据

    Figure  4.   Platform experimental data under different conditions

    图  5   不同工况下卡死回程托辊最高温度及温度达到稳态所需时间

    Figure  5.   Maximum temperature of seized return idlers and time to reach thermal equilibrium under different conditions

    图  6   数值模型

    Figure  6.   Numerical model

    图  7   平台实验数据与数值模拟数据对比

    Figure  7.   Comparison between platform experimental data and numerical simulation data

    图  8   卡死回程托辊温度数值模拟结果

    Figure  8.   Numerical simulation results for seized return idler temperatures

    图  9   不同工况下卡死回程托辊内煤粉最高温度变化曲线

    Figure  9.   Variation curves of the maximum coal dust temperature in seized return idlers under different conditions

    图  10   不同工况下卡死回程托辊内煤粉最高温度

    Figure  10.   The maximum coal dust temperature in seized return idlers under different conditions

    图  11   不同工况下卡死回程托辊及煤粉温度场截面

    Figure  11.   Temperature field cross-section of seized return idlers and coal dust under different conditions

    表  1   实验工况

    Table  1   Experimental conditions

    工况 输送带速度/(m·s−1 环境温度/℃ 巷道风速/(m·s−1
    1 0.5 15 1
    2 1.0 15 1
    3 1.0 15 4
    4 1.0 20 1
    下载: 导出CSV

    表  2   模型基本参数

    Table  2   Basic parameters of the model

    模拟物体比热容/(J·kg−1·K−1密度/(kg·m−3导热系数/(W·m−1·K−1
    托辊4407 87876.20
    煤粉1 4001 6000.10
    下载: 导出CSV

    表  3   模拟数据与平台实验数据的Pearson相关系数

    Table  3   Pearson correlation coefficients between simulation data and platform experimental data

    工况不同测点处模拟数据与平台实验数据之间的Pearson相关系数
    输送带与卡死回程托辊摩擦接触点卡死回程托辊底部
    10.998 550.966 13
    20.993 030.989 92
    30.994 380.956 21
    40.991 570.994 33
    下载: 导出CSV

    表  4   模拟工况

    Table  4   Simulation conditions

    工况输送带速度/(m·s−1环境温度/℃巷道风速/(m·s−1托辊内煤粉
    积存比例/%
    52.015125,50,75,100
    62.015225,50,75,100
    73.515125,50,75,100
    83.520125,50,75,100
    下载: 导出CSV
  • [1]

    ZHAO Lutao,LIU Zhaoting,CHENG Lei. How will China's coal industry develop in the future? A quantitative analysis with policy implications[J]. Energy,2021,235(8). DOI: 10.1016/j.energy.2021.121406.

    [2]

    ZRNIĆ N,ĐORĐEVIĆ M,GAŠIĆ V. Historical background and evolution of belt conveyors[J]. Foundations of Science,2024,29(1):225-255. DOI: 10.1007/s10699-022-09894-6

    [3] 王海军,王洪磊. 带式输送机智能化关键技术现状与展望[J]. 煤炭科学技术,2022,50(12):225-239.

    WANG Haijun,WANG Honglei. Status and prospect of intelligent key technologies of belt conveyor[J]. Coal Science and Technology,2022,50(12):225-239.

    [4]

    TUPKAR R,KUMAR D,SAKHALE C. Material selection and parametric evaluation for medium duty belt conveyor:a review on current status and future directions[J]. Materials Today:Proceedings,2024. DOI: 10.1016/j.matpr.2024.04.021.

    [5]

    AKSOY C O,AKSOY G G U,FIŞNE A,et al. Investigation of a conveyor belt fire in an underground coal mine:experimental studies and CFD analysis[J]. Journal of the Southern African Institute of Mining and Metallurgy,2024,123(12):589-597. DOI: 10.17159/2411-9717/1613/2023

    [6]

    WACHOWICZ J,JANOSZEK T. Mathematical model of conveyor belt fire in mine galleries[J]. Archives of Mining Sciences,2009,54:507-530.

    [7] 李士戎,邓军,陈晓坤,等. 煤矿井下输送带摩擦起火危险点分布规律[J]. 西安科技大学学报,2011,31(6):679-683. DOI: 10.3969/j.issn.1672-9315.2011.06.008

    LI Shirong,DENG Jun,CHEN Xiaokun,et al. Distribution law of potential fire point caused by friction of conveyor belt in underground coal mines[J]. Journal of Xi'an University of Science and Technology,2011,31(6):679-683. DOI: 10.3969/j.issn.1672-9315.2011.06.008

    [8] 郭军,刘荫,金永飞,等. 矿井胶带火灾巷道环境多参数时空演化规律[J]. 西安科技大学学报,2019,39(1):21-27.

    GUO Jun,LIU Yin,JIN Yongfei,et al. Spatiotemporal evolution law of multiple parameters of roadway environment for rubber-belt fire in mine[J]. Journal of Xi'an University of Science and Technology,2019,39(1):21-27.

    [9] 郝海清,王凯,张春玉,等. 矿井皮带巷火灾风烟流场−区−网演化与调控规律[J]. 中国矿业大学学报,2021,50(4):716-724.

    HAO Haiqing,WANG Kai,ZHANG Chunyu,et al. Evolution and regulation law of wind and smoke flow field area network in mine belt roadway fire[J]. Journal of China University of Mining & Technology,2021,50(4):716-724.

    [10]

    PAN Rongkun,GAO Ruixue,CHAO Jiangkun,et al. Thermal characteristics analysis of conveyor belt during ignition[J]. Combustion Science and Technology,2024,196(18):5399-5417. DOI: 10.1080/00102202.2023.2258550

    [11]

    ZHANG Duo,LIU Maoxia,WEN Hu,et al. Study on the characteristics of gas phase products in coal mine conveyor belt fire[J]. Thermochimica Acta,2024,733. DOI: 10.1016/j.tca.2024.179677.

    [12]

    WANG Weifeng,LIU Hanfei,YANG Bo,et al. Pyrolysis characteristics and dynamics analysis of a coal mine roadway conveyor belt[J]. Journal of Thermal Analysis and Calorimetry,2023,148(11):4823-4832. DOI: 10.1007/s10973-022-11753-2

    [13]

    LOWNDES I S,SILVESTER S A,GIDDINGS D,et al. The computational modelling of flame spread along a conveyor belt[J]. Fire Safety Journal,2007,42(1):51-67. DOI: 10.1016/j.firesaf.2006.08.002

    [14] 张洪亮. 基于虚拟现实技术的煤矿胶带火灾模拟系统[J]. 煤矿安全,2014,45(4):128-131.

    ZHANG Hongliang. Coal mine belt fire simulation system based on virtual reality technology[J]. Safety in Coal Mines,2014,45(4):128-131.

    [15]

    VERAKIS H C,DALZELL R W. Impact of entry air velocity on the fire hazard of conveyor belts[C]. 4th International Mine Ventilation Congress,Brisbane,1988:375-381.

    [16]

    ZHOU Gang,CHENG Weimin,ZHANG Rui,et al. Numerical simulation and disaster prevention for catastrophic fire airflow of main air-intake belt roadway in coal mine-a case study[J]. Journal of Central South University,2015,22(6):2359-2368. DOI: 10.1007/s11771-015-2761-x

    [17] 王伟峰,马砺,王刘兵,等. 矿井带式输送机火灾蔓延规律数值模拟研究[J]. 煤矿安全,2017,48(4):40-43.

    WANG Weifeng,MA Li,WANG Liubing,et al. Numerical simulation of spreading laws of coal mine belt conveyer fire[J]. Safety in Coal Mines,2017,48(4):40-43.

    [18]

    KIN A I,SIDORENKO A I. Simulation of the fire in the working of coal mine using the fire dynamics simulator software[C]. 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices,Chemal,2020:276-284.

    [19] 马砺,张晓龙,刘尚明,等. 倾斜角度对巷道输送带火灾影响的数值模拟研究[J]. 煤炭技术,2022,41(10):101-105.

    MA Li,ZHANG Xiaolong,LIU Shangming,et al. Numerical simulation study on influence of inclination angle on roadway conveyor belt fire[J]. Coal Technology,2022,41(10):101-105.

    [20] 马砺,张朔,邹立,等. 不同变质程度煤导热系数试验分析[J]. 煤炭科学技术,2019,47(6):146-150.

    MA Li,ZHANG Shuo,ZOU Li,et al. Experimental analysis of thermal conductivity of different ranks of coal[J]. Coal Science and Technology,2019,47(6):146-150.

    [21]

    RODGERS J L,NICEWANDER W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician,1988,42(1):59-66.

图(11)  /  表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  9
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-07
  • 修回日期:  2025-01-20
  • 网络出版日期:  2024-12-24
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回