Study on disaster mechanism of thick and hard overhanging roof and top cutting control technology
-
摘要:
针对侧向厚硬悬顶下临空巷道围岩变形大、失稳风险高的问题,以大同马脊梁煤矿3810工作面运输巷为工程背景,建立了厚硬侧向悬顶力学模型,确定合理切顶位置理论值为内错煤柱3.98 m。建立UDEC数值计算模型,分析了厚硬悬顶长度、断裂位置对煤柱应力分布及3810运输巷围岩变形的控制效果,结果表明:降低悬顶长度、在煤柱上方合理位置断裂,能够有效降低煤柱侧向应力集中程度,减少巷道围岩的破坏范围及变形。根据分析结果,确定煤柱采空区侧厚硬悬顶进行切顶卸压控制,促使厚硬顶板及时垮落,提高采空区顶板垮落带高度,从而降低煤柱承载的载荷并为煤柱提供侧向约束,提高煤柱承载性能。提出了厚硬侧向悬顶水压致裂切顶卸压控制方案并应用于现场,结果表明:3810运输巷采取水力压裂切顶措施后,巷道围岩变形得到显著改善;切顶后巷道两帮最大值移近量为600 mm,顶板最大下沉量为277 mm;相对于未采取切顶方案的区段,巷道变形量分别降低39.6%(两帮)、31.8%(顶板),巷道有效断面能够满足矿井安全高效生产的需要。
Abstract:To address the challenges of significant deformation and high instability risks in the surrounding rock of unsupported roadways beneath a laterally thick and hard overhanging roof, this study focused on the 3810 working face transport roadway in Majiliang mine, Datong coalfield. A mechanical model of the laterally thick and hard overhanging roof was established, determining the theoretical values for the optimal top cutting position to be 3.98 m from the side of the external faulted coal pillar goaf. A UDEC numerical simulation model was developed to analyze the effects of roof length and fracture position on the stress distribution in the coal pillar and the deformation of the surrounding rock in the roadway. The findings revealed that reducing the overhanging roof length and fracturing at a reasonable position above the coal pillar effectively decreased the lateral stress concentration in the coal pillar, minimized surrounding rock failure, and reduced roadway deformation. Based on these results, a top cutting and pressure relief control strategy was proposed, targeting the thick and hard overhanging roof on the coal pillar's goaf side. This approach promoted timely collapse of the roof, increased the height of the roof fall zone, reduced the load on the coal pillar, and provided lateral confinement, thereby enhancing the bearing capacity of the coal pillar. A hydraulic fracturing-based top cutting and pressure relief plan was proposed and implemented in field practice. Post-application results indicated that the surrounding rock deformation of the 3810 transport roadway improved significantly. After top cutting, the maximum convergence of the roadway sides was reduced to 600 mm, and the maximum roof subsidence was 277 mm. Compared to sections without the top cutting measure, roadway deformation decreased by 39.6% (sides) and 31.8% (roof). The effective cross-sectional area of the roadway met the requirements for safe and efficient mining operations.
-
-
表 1 模型中块体及接触参数
Table 1 Block and contact parameters in model
岩性 块体参数 节理参数 密度/(kg·m−3) 弹性模量/GPa 泊松比 法向刚度/(GPa·m−1) 切向刚度/(GPa·m−1) 黏聚力/MPa 摩擦角/(°) 抗拉强度/MPa 砂质泥岩 2560 3.75 0.24 24.80 14.20 2.85 27 2.80 泥岩 2440 3.95 0.25 24.10 18.60 2.90 25 2.42 细砂岩 2520 5.72 0.24 34.71 19.67 4.64 30 3.73 砂砾岩 2610 5.80 0.25 44.22 22.61 5.47 35 4.74 3号煤层 1340 0.35 0.24 19.20 10.40 2.01 24 1.65 碳质泥岩 2380 3.45 0.26 25.20 14.20 2.84 27 2.04 -
[1] 刘晓刚,张震,刘前进. 多关键层厚硬顶板覆岩破断运动规律研究[J]. 煤炭工程,2023,55(5):96-102. LIU Xiaogang,ZHANG Zhen,LIU Qianjin. Breaking and moving laws of overburden of multi-key layer thick hard roof[J]. Coal Engineering,2023,55(5):96-102.
[2] 陈大勇,黄炳香,吴占伟,等. 煤矿顶板超深孔爆破对巷道围岩稳定性影响研究[J]. 采矿与安全工程学报,2022,39(6):1135-1142. CHEN Dayong,HUANG Bingxiang,WU Zhanwei,et al. Study on influence of ultra-deep hole roof blasting on stability of surrounding rock of roadway[J]. Journal of Mining & Safety Engineering,2022,39(6):1135-1142.
[3] 马宏源,潘俊锋,席国军,等. 坚硬顶板强冲击工作面多巷交叉区域防冲技术[J]. 工矿自动化,2022,48(4):121-127. MA Hongyuan,PAN Junfeng,XI Guojun,et al. Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face[J]. Journal of Mine Automation,2022,48(4):121-127.
[4] 王书文,智宝岩,杜涛涛,等. 厚硬顶板潜在矿震风险地面压裂预控技术[J]. 煤炭科学技术,2023,51(11):1-11. WANG Shuwen,ZHI Baoyan,DU Taotao,et al. Ground fracturing pre-control technology for potential mine seismic risk of thick and hard roof[J]. Coal Science and Technology,2023,51(11):1-11.
[5] 李文龙. 深部厚硬顶板工作面推采速度对围岩采动影响机理研究[D]. 徐州:中国矿业大学,2023. LI Wenlong. Research on effect mechanisms of mining speed on mining induced influences arounddeep working face with thick-hard roof[D]. Xuzhou:China University of Mining and Technology,2024.
[6] 高明仕,徐东,贺永亮,等. 厚硬顶板覆岩冲击矿震影响的远近场效应研究[J]. 采矿与安全工程学报,2022,39(2):215-226. GAO Mingshi,XU Dong,HE Yongliang,et al. Investigation on the near-far field effect of rock burst subject to the breakage of thick and hard overburden[J]. Journal of Mining & Safety Engineering,2022,39(2):215-226.
[7] 杨科,刘文杰,李志华,等. 厚硬顶板下大倾角软煤开采灾变机制与防控技术[J]. 煤炭科学技术,2021,49(2):12-20. YANG Ke,LIU Wenjie,LI Zhihua,et al. Catastrophe mechanism and prevention and control technology on soft coal mining with large inclination angle under thick and hard roof[J]. Coal Science and Technology,2021,49(2):12-20.
[8] 康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953-1959. KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953-1959.
[9] 刘泉声,魏莱,雷广峰,等. 砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J]. 岩土工程学报,2018,40(10):1782-1789. LIU Quansheng,WEI Lai,LEI Guangfeng,et al. Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone[J]. Chinese Journal of Geotechnical Engineering,2018,40(10):1782-1789.
[10] 赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报,2021,38(4):706-719. ZHAO Shankun. A comparative analysis of deep hole roof pre-blasting and directional hydraulic fracture for rockburst control[J]. Journal of Mining & Safety Engineering,2021,38(4):706-719.
[11] 黄炳香,赵兴龙,陈树亮,等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报,2017,36(12):2954-2970. HUANG Bingxiang,ZHAO Xinglong,CHEN Shuliang,et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2954-2970.
[12] 黄炳香,王友壮. 顶板钻孔割缝导向水压裂缝扩展的现场试验[J]. 煤炭学报,2015,40(9):2002-2008. HUANG Bingxiang,WANG Youzhuang. Field investigation on crack propagation of directional hydraulic fracturing in hard roof[J]. Journal of China Coal Society,2015,40(9):2002-2008.
[13] 于斌,匡铁军,杨敬轩,等. 特厚煤层开采坚硬顶板覆岩结构及其演化特征分析[J]. 煤炭科学技术,2023,51(1):95-104. YU Bin,KUANG Tiejun,YANG Jingxuan,et al. Analysis of overburden structure and evolution characteristics of hard roof mining in extremely thick coal seam[J]. Coal Science and Technology,2023,51(1):95-104.
[14] 何春光,徐晓鼎,杨建辉,等. 厚硬顶板切顶卸压围岩变形控制技术研究[J]. 煤炭工程,2022,54(9):59-63. HE Chunguang,XU Xiaoding,YANG Jianhui,et al. Surrounding rock deformation control for roof cutting and pressure relief under thick and hard roof[J]. Coal Engineering,2022,54(9):59-63.
[15] 解嘉豪,韩刚,孙凯,等. 邻空巷坚硬顶板预裂爆破防冲机理及效果检验[J]. 煤炭学报,2023,48(5):2078-2091. XIE Jiahao,HAN Gang,SUN Kai,et al. Rockburst prevention mechanism and effect test of blast presplitting of hard roof in gob-side roadway[J]. Journal of China Coal Society,2023,48(5):2078-2091.
[16] 张栋,柏建彪,闫帅,等. 非均质复合岩巷围岩破坏机理及底鼓控制技术[J]. 岩土工程学报,2022,44(9):1699-1709,10. ZHANG Dong,BAI Jianbiao,YAN Shuai,et al. Failure mechanism of surrounding rock and control of floor heave in heterogeneous composite rock roadway[J]. Chinese Journal of Geotechnical Engineering,2022,44(9):1699-1709,10.
[17] 冯强,刘炜炜,伏圣岗,等. 基于弹性地基梁采场坚硬顶板变形与内力的解析计算[J]. 采矿与安全工程学报,2017,34(2):342-347. FENG Qiang,LIU Weiwei,FU Shenggang,et al. Analytical solution for deformation and internal force of hard roof in stope based on elastic foundation beam[J]. Journal of Mining & Safety Engineering,2017,34(2):342-347.
[18] 潘岳,顾士坦,李文帅. 煤层弹性、硬化和软化区对顶板弯矩特性影响分析[J]. 岩石力学与工程学报,2016,35(增刊2):3846-3857. PAN Yue,GU Shitan,LI Wenshuai. Analysis on bending moment property of hard roof influenced by elastic,hardening and softening zone of coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S2):3846-3857.
[19] 张强,杨康,张吉雄,等. 固体充填开采直接顶位态控制机制及工程案例[J]. 中国矿业大学学报,2022,51(1):35-45. ZHANG Qiang,YANG Kang,ZHANG Jixiong,et al. Immediate roof control mechanism in solid backfill mining method and its engineering case[J]. Journal of China University of Mining & Technology,2022,51(1):35-45.
[20] LIU Jiangwei,LIU Changyou,YAO Qiangling,et al. The position of hydraulic fracturing to initiate vertical fractures in hard hanging roof for stress relief[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132(1):104328.
[21] 赵常辛,李晓旭,石蒙,等. 坚硬顶板切顶卸压技术对巷道围岩变形规律影响[J]. 工矿自动化,2024,50(1):147-154. ZHAO Changxin,LI Xiaoxu,SHI Meng,et al. The influence of hard roof cutting and pressure relief technology on the deformation law of surrounding rock in roadways[J]. Journal of Mine Automation,2024,50(1):147-154.
-
期刊类型引用(11)
1. 陈韬,张幼振,许超. 煤矿井下钻进工况智能识别算法研究与应用. 煤矿安全. 2025(03): 242-249 . 百度学术
2. 王德飞,王湛岩,赵志刚,孟智勇,彭孝东. 基于波门控制策略的激光角度欺骗干扰概率研究. 光学与光电技术. 2024(06): 96-102 . 百度学术
3. 佘建煌. 多模式特征增强卷积的带式输送机异物检测模型. 矿山机械. 2023(04): 47-53 . 百度学术
4. 杨波. 基于大数据分析的煤矿通风自动控制系统. 能源与环保. 2023(08): 39-44 . 百度学术
5. 李红岩,杨朝旭,荣相,史晗,王越,刘宝,王磊. 矿用逆变器功率器件故障预测与健康管理技术现状及展望. 工矿自动化. 2022(05): 15-20 . 本站查看
6. 李曼,潘楠楠,段雍,曹现刚. 煤矿旋转机械健康指标构建及状态评估. 工矿自动化. 2022(09): 33-41 . 本站查看
7. 李海龙. 基于Revit的煤矿变频带式输送机电机驱动控制系统设计. 煤矿机械. 2022(12): 31-35 . 百度学术
8. 冯源琪,左弯弯,王金川,杨梦莹,张建文. 基于小波包和分形维数的瓦斯传感器状态评估方法研究. 电气防爆. 2021(03): 1-6+10 . 百度学术
9. 杜京义,陈瑞,郝乐,史志芒. 煤矿带式输送机异物检测. 工矿自动化. 2021(08): 77-83 . 本站查看
10. 洪涛,张富强. 基于端对端最优功率的成套连采系统设计. 吉林大学学报(信息科学版). 2021(06): 675-681 . 百度学术
11. 赵炳文,郭栋,王亮,祝菁,刘航,李幸,边帅. 井下车辆智能调度系统的设计及应用. 能源技术与管理. 2021(06): 27-30 . 百度学术
其他类型引用(4)