干湿循环处理后煤在差速循环荷载作用下的力学特征

刘华锋

刘华锋. 干湿循环处理后煤在差速循环荷载作用下的力学特征[J]. 工矿自动化,2024,50(11):152-160. DOI: 10.13272/j.issn.1671-251x.2024090016
引用本文: 刘华锋. 干湿循环处理后煤在差速循环荷载作用下的力学特征[J]. 工矿自动化,2024,50(11):152-160. DOI: 10.13272/j.issn.1671-251x.2024090016
LIU Huafeng. Mechanical characteristics of coal under differential cyclic loading after dry-wet cyclic treatment[J]. Journal of Mine Automation,2024,50(11):152-160. DOI: 10.13272/j.issn.1671-251x.2024090016
Citation: LIU Huafeng. Mechanical characteristics of coal under differential cyclic loading after dry-wet cyclic treatment[J]. Journal of Mine Automation,2024,50(11):152-160. DOI: 10.13272/j.issn.1671-251x.2024090016

干湿循环处理后煤在差速循环荷载作用下的力学特征

基金项目: 国家自然科学基金面上项目(52174226)。
详细信息
    作者简介:

    刘华锋(1984—),男,河南永城人,副研究员,硕士,现从事煤矿安全方面的研究工作,E-mail:879865409@qq.com

  • 中图分类号: TD315

Mechanical characteristics of coal under differential cyclic loading after dry-wet cyclic treatment

  • 摘要:

    在煤矿地下水库中,煤柱坝体处于动态扰动的干湿环境中,单一研究煤在干湿循环或循环加卸载条件下的力学特征不够全面、客观。针对该问题,通过试验研究了经过干湿循环处理后的煤样在差速循环荷载作用下的力学特征。将煤样分为4组进行试验,第1组处于自然状态,第2组干湿循环10次,第3组干湿循环40次,第4组一直浸泡在水中;设计了2种试验模式,模式1为快速加载、慢速卸载,模式2为慢速加载、快速卸载。重点分析了煤样应变、割线模量、泊松比随循环次数的演化规律,结果表明:加载模式对煤样的力学性质影响明显,煤样在模式1下的峰值和残余应变比模式2大;整个循环阶段没有发生破坏的煤样在模式1下产生了更大的割线模量增量;泊松比在前几个循环级缓慢增加,到最后2个循环级或破坏前的循环级中快速增大,经过干湿循环的煤样泊松比增量高于自然状态下的煤样。试验结果可为地下水库中的煤柱坝体稳定性设计提供安全方面的指导,以增强煤柱坝体的稳定性和安全性。

    Abstract:

    In underground coal mine reservoirs, coal pillar dams are subjected to dynamic dry-wet environmental disturbances. Studying the mechanical characteristics of coal solely under dry-wet cycling or cyclic loading and unloading conditions is not comprehensive or objective enough. To address this problem, the mechanical characteristics of coal samples after dry-wet cyclic treatment under differential cyclic loading were studied experimentally. Coal samples were divided into four groups for testing: Group 1 was in a natural state, Group 2 underwent 10 dry-wet cycles, Group 3 underwent 40 dry-wet cycles, and Group 4 was continuously soaked in water. Two test modes were designed: Mode 1 featured rapid loading and slow unloading, while Mode 2 involved slow loading and rapid unloading. The evolution trend of strain, secant modulus, and Poisson′s ratio of coal samples with the number of cycles was analyzed. Results revealed that the loading mode significantly affected the mechanical properties of coal samples. Peak and residual strains of coal samples under Mode 1 were higher than those under Mode 2. Coal samples without damage during the entire cyclic loading phase exhibited greater secant modulus increments under Mode 1. Poisson′s ratio increased gradually during the initial loading cycles but rose sharply in the last two or pre-failure cycles. The Poisson′s ratio increment of coal samples after dry-wet cycling was higher than those in natural state. These findings can provide safety guidance for the stability design of coal pillar dams in underground reservoirs, aiming to enhance their stability and safety.

  • 图  1   标准试验煤样

    Figure  1.   Standard coal samples for testing

    图  2   煤样微观测试

    Figure  2.   Microscopic testing of coal samples

    图  3   煤样干湿循环处理过程

    Figure  3.   Dry-wet cyclic treatment process of coal samples

    图  4   DYS−1000 岩石三轴试验机

    Figure  4.   DYS-1000 rock triaxial testing machine

    图  5   循环加卸载试验方案

    Figure  5.   Cyclic loading and unloading test scheme

    图  6   煤样应力−应变曲线

    Figure  6.   Stress-strain curves of coal sample

    图  7   煤样轴向应变随循环次数变化规律

    Figure  7.   Variation trend of axial strain with the number of cycles for coal samples

    图  8   割线模量随循环次数变化规律

    Figure  8.   Variation trend of secant modulus with the number of cycles

    图  9   循环荷载下煤的泊松比与循环次数的关系曲线

    Figure  9.   Relationship curves between Poisson's ratio and the number of cycles for coal under cyclic loading

    图  10   不同浸泡次数下煤的泊松比增量对比

    Figure  10.   Comparison of Poisson's ratio increments of coal with different soaking cycles

    表  1   煤样分组编号和物理参数

    Table  1   Grouping numbers and physical parameters of coal samples

    组别 编号 质量/g 高度/mm 直径/mm 密度/
    (kg·m−3
    波速/
    (m·s−1
    干湿循
    环次数
    加载
    模式
    1 C1 258.55 100.32 49.43 1343 1291 一直
    浸泡
    单调
    C2 249.47 100.27 49.41 1297 1149 模式1
    C3 247.82 99.80 49.52 1289 1457 模式2
    2 C7 253.8 100.46 49.44 1316 1455 40 单调
    C13 250.2 100.34 49.47 1297 1168 模式1
    C10 253.64 100.29 49.47 1315 1303 模式2
    3 C9 259.05 100.02 49.45 1348 1378 10 单调
    C15 251.46 100.26 49.49 1303 1145 模式1
    C17 256.85 100.42 49.45 1332 1275 模式2
    4 C16 254.33 100.13 49.45 1322 1426 自然
    状态
    单调
    C19 251.38 100.17 49.50 1304 1204 模式1
    C21 249.71 100.10 49.43 1300 1154 模式2
    下载: 导出CSV
  • [1] 袁亮,姜耀东,王凯,等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报,2018,43(1):14-20.

    YUAN Liang,JIANG Yaodong,WANG Kai,et al. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society,2018,43(1):14-20.

    [2] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079-3089.

    GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079-3089.

    [3] 孔繁龙,刘敬东,田灵涛,等. 水岩作用下区段煤柱合理宽度研究[J]. 工矿自动化,2022,48(12):144-150.

    KONG Fanlong,LIU Jingdong,TIAN Lingtao,et al. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation,2022,48(12):144-150.

    [4] 王路军,曹志国,程建超,等. 煤矿地下水库坝基层间岩体破坏及突渗力学模型[J]. 煤炭学报,2023,48(3):1192-1208.

    WANG Lujun,CAO Zhiguo,CHENG Jianchao,et al. Failure analysis of rock strata between upper and lower coals under underground reservoir in coal mine and its critical percolation model of jumping permeability[J]. Journal of China Coal Society,2023,48(3):1192-1208.

    [5] 陈功辉,唐明云,甯江琪,等. 长焰煤气水相渗特征实验研究[J]. 工矿自动化,2024,50(1):155-162.

    CHEN Gonghui,TANG Mingyun,NING Jiangqi,et al. Experimental study on the permeability features of long flame gas water phase[J]. Journal of Mine Automation,2024,50(1):155-162.

    [6] 乔云霞,陈曦,葛少成,等. 煤中侧链官能团与水分子间的量子化学模拟[J]. 矿业安全与环保,2024,51(3):78-84,91.

    QIAO Yunxia,CHEN Xi,GE Shaocheng,et al. Quantum chemical simulation between side chain functional group and water molecules in coal[J]. Mining Safety & Environmental Protection,2024,51(3):78-84,91.

    [7] 王方田,张村,汤天阔,等. 循环水浸作用下煤体孔隙与损伤演化机制实验研究[J]. 矿业科学学报,2024,9(4):608-618.

    WANG Fangtian,ZHANG Cun,TANG Tiankuo,et al. Pore and strength damage evolution mechanism of coal induced by the circulating water immersion effect[J]. Journal of Mining Science and Technology,2024,9(4):608-618.

    [8] 尹大伟,丁屹松,汪锋,等. 考虑初始损伤的压力水浸煤岩力学特性试验研究[J]. 煤炭学报,2023,48(12):4417-4432.

    YIN Dawei,DING Yisong,WANG Feng,et al. Experimental study on mechanical properties of coal soaked in pressurized water considering initial damage[J]. Journal of China Coal Society,2023,48(12):4417-4432.

    [9] 刘小玲,张泽天,张茹,等. 浸水煤体单轴压缩能量破坏机理及层理效应研究 [J/OL]. 工程科学与技术:1-15[2024-09-04]. http://kns.cnki.net/kcms/detail/ 51.1773.TB.20240428.1252.006.html.

    LIU Xiaoling,ZHANG Zetian,ZHANG Ru,et al. Energy failure mechanism and bedding effect of soaked coal under uniaxial compression[J/OL]. Advanced Engineering Sciences:1-15[2024-09-04]. http://kns.cnki.net/kcms/detail/51.1773.TB.20240428.1252.006.html.

    [10] 邹天民,杜晓丽,张琬昕. 干湿循环荷载下煤岩力学性质及破坏形态研究[J]. 化工矿物与加工,2022,51(7):10-12,17.

    ZOU Tianmin,DU Xiaoli,ZHANG Wanxin. Study on mechanical properties of coal rock and failure mode under dry-wet cycle load[J]. Industrial Minerals & Processing,2022,51(7):10-12,17.

    [11] 吴峻民. 采动水浸作用下煤柱坝体承载特征与失稳规律研究[J]. 煤矿安全,2024,55(8):159-166.

    WU Junmin. Study on bearing characteristics and instability law of coal pillar dams under the effect of mining and water immersion[J]. Safety in Coal Mines,2024,55(8):159-166.

    [12] 李建华. 煤矿地下水库储水浸泡对煤柱坝体强度影响的试验研究[J]. 煤矿开采,2018,23(3):15-17,9.

    LI Jianhua. Experimental study of water storage soaking of coal mine underground reservoir to coal pillar dam body strength[J]. Coal Mining Technology,2018,23(3):15-17,9.

    [13] 徐亚军,杜毅博. 基于楔块模型的煤壁极限稳定高度研究与应用[J]. 岩石力学与工程学报,2022,41(增刊2):3240-3249.

    XU Yajun,DU Yibo. Research and application of coal wall limit stability height based on wedge model[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S2):3240-3249.

    [14] 焦振华,倪志辉,胡浩,等. 单轴压缩下含钻孔煤样力学行为试验与数值模拟 [J/OL]. 煤炭科学技术:1-13[2024-09-04]. http://kns.cnki.net/kcms/detail/ 11.2402.TD.20240509.1601.003.html.

    JIAO Zhenhua,NI Zhihui,HU Hao,et al. Testing and numerical simulation of mechanical behavior of drilled coal samples under uniaxial compression[J/OL]. Coal Science and Technology:1-13[2024-09-04]. http://kns. cnki.net/kcms/detail/11.2402.TD.20240509.1601.003.html.

    [15] 刘洪涛,刘勤裕,韩子俊,等. 基于三轴压缩的脆性煤体力学性质及其本构关系研究[J]. 岩石力学与工程学报,2023,42(12):2932-2944.

    LIU Hongtao,LIU Qinyu,HAN Zijun,et al. Study on mechanical properties and constitutive relation of brittle coal based on triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(12):2932-2944.

    [16] 冯友良,鞠文君. 加卸荷应力路径下巷帮煤体力学特性与损伤破坏研究[J]. 煤炭科学技术,2019,47(4):210-217.

    FENG Youliang,JU Wenjun. Study on mechanical characteristics and damage failure of coal mass from roadway side wall under loading and unloading stress path[J]. Coal Science and Technology,2019,47(4):210-217.

    [17] 王磊,邹鹏,范浩,等. 循环荷载下深部卸荷煤体力学特性及能量演化规律研究[J]. 岩石力学与工程学报,2024,43(10):2341-2355.

    WANG Lei,ZOU Peng,FAN Hao,et al. Study on mechanical properties and energy evolution of deep unloading coal under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(10):2341-2355.

    [18] 陈笑予,姚强岭,陈胜焱,等. 基于深部含水煤样失稳特征的荷载梁式主控裂隙模型的试验研究[J]. 岩土力学,2023,44(增刊1):375-386.

    CHEN Xiaoyu,YAO Qiangling,CHEN Shengyan,et al. Experimental study on a loading beam main control crack model based on the instability characteristics of deep coal samples containing water[J]. Rock and Soil Mechanics,2023,44(S1):375-386.

    [19] 薛慧峰,李星明,张元,等. 酸性水环境下煤样的损伤演化特性研究[J]. 矿业研究与开发,2022,42(2):90-93.

    XUE Huifeng,LI Xingming,ZHANG Yuan,et al. Study on damage evolution characteristics of coal samples under acidic water environment[J]. Mining Research and Development,2022,42(2):90-93.

    [20] 杨永杰,段会强,邢鲁义. 周期荷载作用下煤的疲劳变形及能量演化特征[J]. 应用基础与工程科学学报,2018,26(1):154-167.

    YANG Yongjie,DUAN Huiqiang,XING Luyi. Fatigue deformation and energy evolution of coal under uniaxial cyclic loading[J]. Journal of Basic Science and Engineering,2018,26(1):154-167.

    [21] 汤传金. 干湿循环及酸性水环境影响下煤样损伤特征研究[D]. 徐州:中国矿业大学,2020.

    TANG Chuanjin. Study on damage characteristics of coal under the influence of dryness-saturation cycles and acid water environment[D]. Xuzhou:China University of Mining and Technology,2020.

    [22] 董西好,刘帅,刘平. 卸荷条件下冻结砂岩力学性质及损伤本构模型研究[J]. 岩石力学与工程学报,2024,43(2):495-509.

    DONG Xihao,LIU Shuai,LIU Ping. Study on mechanical properties and damage constitutive model of frozen sandstone under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(2):495-509.

  • 期刊类型引用(4)

    1. 郅富标,吕辉. 基于LoRa的采煤机振动信号采集系统设计. 煤炭技术. 2023(03): 268-270 . 百度学术
    2. 毛清华,张勇强,赵晓勇,张旭辉,樊红卫,张飞. 变速工况下采煤机行星齿轮传动系统故障诊断. 工矿自动化. 2021(07): 8-13 . 本站查看
    3. 李鑫艳,张晓光,王艳芬,周家思,孙彦景. 工业脉冲噪声下无线通信系统预编码设计及性能分析. 工矿自动化. 2021(10): 54-61 . 本站查看
    4. 曹现刚,姜韦光,张国祯. 采煤机运行状态数据实时清洗技术研究. 煤炭工程. 2020(03): 127-131 . 百度学术

    其他类型引用(7)

图(10)  /  表(1)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-09-04
  • 修回日期:  2024-11-23
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回