基于AIWCPSO算法的喷浆机械臂运动轨迹优化

石灿, 檀子良, 雷超, 李允旺, 徐寒飞, 胡乔炜, 计振东

石灿,檀子良,雷超,等. 基于AIWCPSO算法的喷浆机械臂运动轨迹优化[J]. 工矿自动化,2024,50(12):155-165. DOI: 10.13272/j.issn.1671-251x.2024080094
引用本文: 石灿,檀子良,雷超,等. 基于AIWCPSO算法的喷浆机械臂运动轨迹优化[J]. 工矿自动化,2024,50(12):155-165. DOI: 10.13272/j.issn.1671-251x.2024080094
SHI Can, TAN Ziliang, LEI Chao, et al. Optimization of shotcrete manipulator motion trajectory based on AIWCPSO algorithm[J]. Journal of Mine Automation,2024,50(12):155-165. DOI: 10.13272/j.issn.1671-251x.2024080094
Citation: SHI Can, TAN Ziliang, LEI Chao, et al. Optimization of shotcrete manipulator motion trajectory based on AIWCPSO algorithm[J]. Journal of Mine Automation,2024,50(12):155-165. DOI: 10.13272/j.issn.1671-251x.2024080094

基于AIWCPSO算法的喷浆机械臂运动轨迹优化

基金项目: “十四五”国家重点研发计划项目(2021YFC3001300);国家自然科学基金资助项目(52121003)。
详细信息
    作者简介:

    石灿(1999—),男,湖北黄石人,硕士研究生,主要研究方向为机械臂运动控制算法,E-mail:m17671241867@163.com

    通讯作者:

    李允旺(1980—),男,山东嘉祥人,副教授,博士,博士研究生导师,主要研究方向为矿井救灾机器人技术、巡检机器人技术、全方位移动技术、矿山安全装备等,E-mail:yunwangli@cumtb.edu.cn

  • 中图分类号: TD353.5

Optimization of shotcrete manipulator motion trajectory based on AIWCPSO algorithm

  • 摘要:

    针对传统喷浆机械臂轨迹规划算法存在多路径段间过渡突变、频繁启停导致喷浆效率不高和喷浆不均匀等问题,提出了一种自适应惯性权重及加速度系数的粒子群优化(AIWCPSO)算法,并基于该算法实现喷浆机械臂运动轨迹优化。提出了改进多段轨迹规划算法,采用直线加圆弧轨迹的过渡策略,将竖直方向的直线运动替换成圆弧运动,通过正弦加减速启停算法规划机械臂末端启停处的轨迹,以防止加速度突变,中间段的直线和圆弧轨迹进行匀速轨迹规划,实现机械臂末端匀速光滑运动;通过AIWCPSO算法在运动学约束下对运动参数进行优化,得到最优喷浆时间和速度,提升喷浆机械臂工作效率和喷浆均匀度。实验结果表明:与传统喷浆轨迹规划算法相比,改进多段轨迹规划算法喷浆平均效率提高了25.42%,喷浆轨迹均匀度明显改善;采用AIWCPSO算法优化后,喷浆效率提高了1.330 8%。

    Abstract:

    To address issues in traditional shotcrete manipulator trajectory planning algorithms, such as abrupt transitions between multiple path segments and low shotcrete efficiency and uniformity caused by frequent starts and stops, an optimized motion trajectory method based on the adaptive inertia weight and acceleration coefficient particle swarm optimization (AIWCPSO) algorithm was proposed. An improved multi-segment trajectory planning algorithm was developed, which incorporated a transition strategy combining linear and arc trajectories. Vertical linear motion was replaced with arc motion. Additionally, a sinusoidal acceleration and deceleration start-stop algorithm was used to plan the trajectory of the end effector of the manipulator at start and stop points to prevent abrupt changes in acceleration. The middle segment of linear and arc trajectories was planned for uniform motion, ensuring smooth and uniform movement at the end effector of the manipulator. Using the AIWCPSO algorithm, motion parameters were optimized under kinematic constraints to achieve the optimal shotcrete time and speed, thereby improving the efficiency and uniformity of the shotcrete manipulator. Experimental results showed that, compared with traditional trajectory planning algorithms, the improved multi-segment trajectory planning algorithm increased average shotcrete efficiency by 25.42% and significantly improved the uniformity of shotcrete trajectory. After optimization with the AIWCPSO algorithm, shotcrete efficiency increased by 1.330 8%.

  • 图  1   传统喷浆轨迹

    Figure  1.   Conventional shotcrete trajectory

    图  2   喷浆顺序

    Figure  2.   Shotcrete sequence

    图  3   匀速直线插补

    Figure  3.   Uniform linear interpolation

    图  4   匀速圆弧插补

    Figure  4.   Uniform arc interpolation

    图  5   改进喷浆轨迹

    Figure  5.   Improved shotcrete trajectory

    图  6   第1个直线段的速度曲线

    Figure  6.   Velocity curve of the first linear segment

    图  7   最后一个直线段的速度曲线

    Figure  7.   The velocity curve of the last linear segment

    图  8   喷浆轨迹对比

    Figure  8.   Comparison of shotcrete trajectories

    图  9   插补算法流程

    Figure  9.   Flow of interpolation algorithm

    图  10   AIWCPSO优化运动参数流程

    Figure  10.   Flow of adaptive inertia weight and acceleration coefficients particle swarm optimization(AIWCPSO) algorithm

    图  11   DH坐标

    Figure  11.   DH coordinates

    图  12   喷浆轨迹仿真参数

    Figure  12.   Parameters for shotcrete trajectory simulation

    图  13   喷浆轨迹仿真

    Figure  13.   Shotcrete trajectories simulation

    图  14   机械臂末端运动仿真曲线

    Figure  14.   Manipulator end effector motion simulation curves

    图  15   AIWPSO和AIWCPSO算法适应度曲线

    Figure  15.   Fitness curves of adaptive inertia weight PSO(AIWPSO) and AIWCPSO algorithms

    图  16   喷浆均匀度仿真对比

    Figure  16.   Comparison of shotcrete uniformity simulation

    图  17   物理实验平台

    Figure  17.   Physical experiment platform

    图  18   机械臂末端运动实验曲线

    Figure  18.   Manipulator end effector motion experimental curves

    图  19   喷浆均匀度实验对比

    Figure  19.   Comparison of shotcrete uniformity in experiment

    表  1   机械臂关节运动学约束

    Table  1   Kinematic constraints on robot manipulator joints

    关节 关节速度/((°)·s−1 关节加速度/((°)·s−2
    关节1—关节3 ±50 ±170
    关节4—关节6 ±50 ±152
    下载: 导出CSV

    表  2   协作臂直立姿态改进DH参数

    Table  2   Improved DH parameters for upright posture of collaborative manipulator

    q γq-1/(°) hq-1/mm dq/mm θq /(°) 关节范围/(°)
    1 0 0 144 0 −179~179
    2 90 0 0 −90 −146~146
    3 0 −264 0 0 −146~146
    4 0 −236 106 −90 −179~179
    5 90 0 114 0 −179~179
    6 −90 0 67 0 −179~179
    下载: 导出CSV

    表  3   算法仿真时间对比

    Table  3   Comparison of algorithm simulation time

    匀速速度/(mm·s−1 传统算法时间/s 本文算法时间/s 效率提升/%
    150 20.47 15.15 25.989 3
    155 19.64 14.70 25.152 7
    160 19.18 14.22 25.860 3
    165 18.58 13.77 25.888 1
    170 18.06 13.38 25.913 6
    175 17.52 12.99 25.856 2
    下载: 导出CSV

    表  4   算法实验时间对比

    Table  4   Comparison of experimental time of algorithms

    匀速速度/(mm·s−1 传统算法时间/s 本文算法时间/s 效率提升/%
    150 20.714 4 15.344 0 25.925 9
    155 19.892 4 14.823 4 25.482 1
    160 19.371 8 14.412 4 25.601 1
    165 18.686 8 13.974 0 25.219 9
    170 18.221 0 13.617 8 25.263 2
    175 17.673 0 13.234 2 25.116 3
    下载: 导出CSV
  • [1] 贾建龙,王志鹏,赵耀斌,等. 智能化矿用喷浆机器人研究及应用[J]. 中国煤炭,2024,50(7):91-96.

    JIA Jianlong,WANG Zhipeng,ZHAO Yaobin,et al. Research and application of intelligent mining spraying robot[J]. China Coal,2024,50(7):91-96.

    [2] 聂海男,邓立营. 基于ADAMS的喷浆液压机械臂动力学仿真分析[J]. 机电工程技术,2024,53(8):211-214. DOI: 10.3969/j.issn.1009-9492.2024.08.045

    NIE Hainan,DENG Liying. Dynamics simulation analysis of shotcrete hydraulic manipulator based on ADAMS[J]. Mechanical & Electrical Engineering Technology,2024,53(8):211-214. DOI: 10.3969/j.issn.1009-9492.2024.08.045

    [3]

    SUN Zhenjiao,CHEN Lianjun,YU Xin,et al. Study on optimization of shotcrete loading technology and the diffusion law of intermittent dust generation[J]. Journal of Cleaner Production,2021,312. DOI: 10.1016/j.jclepro.2021.127765.

    [4] 李浩天. 矿井巷道喷浆机械手壁面感知技术研究[D]. 徐州:中国矿业大学,2022.

    LI Haotian. Research on wall sensing technology of slurry spraying robot in mine roadway[D]. Xuzhou:China University of Mining and Technology,2022.

    [5]

    JIA Lianhui,LIU Shenyao,CAO Chenxu,et al. Kinematics and spatial structure analysis of TBM gunite robot based on D-H parameter method[J]. Scientific Reports,2024,14(1). DOI: 10.1038/s41598-024-64439-0.

    [6] 徐海乔. 巷道喷浆机械手轨迹规划与自动控制研究[D]. 徐州:中国矿业大学,2019.

    XU Haiqiao. Research on trajectory planning and automatic control of roadway slurry spraying robot[D]. Xuzhou:China University of Mining and Technology,2019.

    [7] 孙宪超. 湿喷机械臂自动化作业策略与轨迹规划研究[D]. 哈尔滨:哈尔滨工业大学,2021.

    SUN Xianchao. Research on automation operation strategy and trajectory planning of wet-shotcrete manipulator[D]. Harbin:Harbin Institute of Technology,2021.

    [8] 郭玉. 八自由度隧道喷浆机械臂的运动学及喷浆轨迹规划研究[D]. 秦皇岛:燕山大学,2021.

    GUO Yu. Research on the kinematics and shotcrete trajectory planning of an eight-degree-of-freedom tunnel spraying robotic arm[D]. Qinhuangdao:Yanshan University,2021.

    [9] 宋迪. 一种八自由度的隧道自动喷浆机器人[D]. 长沙:中南大学,2019.

    SONG Di. A tunnel automatic shotcreting robot with eight degrees of freedom[D]. Changsha:Central South University,2019.

    [10]

    AUEN A K,LYNGROTH T S. Modelling,identification and control of a 5-DOF shotcrete robot:development of a framework for automatic application of shotcrete for AMV 4200H[D]. Arendal,Grimstad and Kristiansan:University of Agder,2019.

    [11] 许哲,朱海洋,王庆诚. 基于S型速度曲线的机器人连续多轨迹规划[J]. 机械设计与研究,2021,37(6):59-65.

    XU Zhe,ZHU Haiyang,WANG Qingcheng. Continuous multipath trajectory planning of robot based on S-curve velocity[J]. Machine Design & Research,2021,37(6):59-65.

    [12]

    ZHAO Lide,XIAO Qian,CHEN Hao,et al. Research on trajectory planning method of the collaborative manipulator[C]. 5th International Conference on Information Science,Electrical,and Automation Engineering,Wuhan,2023:24-26.

    [13]

    MISTRY K,ZHANG Li,NEOH S C,et al. A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition[J]. IEEE Transactions on Cybernetics,2017,47(6):1496-1509. DOI: 10.1109/TCYB.2016.2549639

    [14]

    WANG Mingming,LUO Jianjun,YUAN Jianping,et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization[J]. Acta Astronautica,2018,146:259-272. DOI: 10.1016/j.actaastro.2018.03.012

    [15]

    EKREM Ö,AKSOY B. Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm[J]. Engineering Applications of Artificial Intelligence,2023,122. DOI: 10.1016/j.engappai.2023.106099.

    [16]

    LIANG Bingqin,LIN Xinzhang,LIU Ganghui,et al. Trajectory analysis and optimization of sea buckthorn fruit vibration separation manipulator based on I-PSO algorithm[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-47001-2.

    [17]

    LI T H S,KUO Pinghuan,HO Y F,et al. Intelligent control strategy for robotic arm by using adaptive inertia weight and acceleration coefficients particle swarm optimization[J]. IEEE Access,2019,7:126929-126940. DOI: 10.1109/ACCESS.2019.2939050

    [18] 何磊. 六自由度喷浆机械臂的轨迹规划与跟踪控制研究[D]. 长沙:中南大学,2023.

    HE Lei. Research on trajectory planning and tracking control of six-degree-of-freedom slurry spraying robotic arm[D]. Changsha:Central South University,2023.

    [19] GB 50086—2015 岩土锚杆与喷射混凝土支护工程技术规范[S].

    GB 50086—2015 Technical code for engineering of ground anchoring and shotcrete support[S].

    [20] 陈伟华,张铁. 六自由度喷涂机器人插补算法的研究[J]. 微计算机信息,2009,25(8):251-252,263.

    CHEN Weihua,ZHANG Tie. The study of 6-DOF painting robot's interpolation algorithm[J]. Microcomputer Information,2009,25(8):251-252,263.

    [21] 林威,江五讲. 工业机器人笛卡尔空间轨迹规划[J]. 机械工程与自动化,2014(5):141-143. DOI: 10.3969/j.issn.1672-6413.2014.05.058

    LIN Wei,JIANG Wujiang. Trajectory planning of industrial robot in Cartesian space[J]. Mechanical Engineering & Automation,2014(5):141-143. DOI: 10.3969/j.issn.1672-6413.2014.05.058

    [22]

    NICKABADI A,EBADZADEH M M,SAFABAKHSH R. A novel particle swarm optimization algorithm with adaptive inertia weight[J]. Applied Soft Computing,2011,11(4):3658-3670. DOI: 10.1016/j.asoc.2011.01.037

    [23]

    LI T H S,LIN C J,KUO Pinghuan,et al. Grasping posture control design for a home service robot using an ABC-based adaptive PSO algorithm[J]. International Journal of Advanced Robotic Systems,2016,13(3). DOI: 10.5772/64044.

  • 期刊类型引用(2)

    1. 张黎明,林健云,司磊磊,赵琼祥,王沉,武国鹏. 高阶煤吸附孔结构特征及其对甲烷吸附能力的影响. 工矿自动化. 2024(07): 147-155 . 本站查看
    2. 钟方德. 中高阶煤储层吸附孔孔隙结构特征对比分析. 中国煤炭地质. 2018(S1): 48-55 . 百度学术

    其他类型引用(3)

图(19)  /  表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  15
  • PDF下载量:  14
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-08-30
  • 修回日期:  2024-12-21
  • 网络出版日期:  2024-12-10
  • 刊出日期:  2024-12-24

目录

    JI Zhendong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回