矿用钢丝绳双源磁回路结构设计与仿真分析

周坪, 王士豪, 周公博, 赵天驰, 李煊瀚, 闫晓东

周坪,王士豪,周公博,等. 矿用钢丝绳双源磁回路结构设计与仿真分析[J]. 工矿自动化,2024,50(10):135-146. DOI: 10.13272/j.issn.1671-251x.2024070079
引用本文: 周坪,王士豪,周公博,等. 矿用钢丝绳双源磁回路结构设计与仿真分析[J]. 工矿自动化,2024,50(10):135-146. DOI: 10.13272/j.issn.1671-251x.2024070079
ZHOU Ping, WANG Shihao, ZHOU Gongbo, et al. Design and simulation analysis of a dual-source magnetic loop structure for mining steel wire rope[J]. Journal of Mine Automation,2024,50(10):135-146. DOI: 10.13272/j.issn.1671-251x.2024070079
Citation: ZHOU Ping, WANG Shihao, ZHOU Gongbo, et al. Design and simulation analysis of a dual-source magnetic loop structure for mining steel wire rope[J]. Journal of Mine Automation,2024,50(10):135-146. DOI: 10.13272/j.issn.1671-251x.2024070079

矿用钢丝绳双源磁回路结构设计与仿真分析

基金项目: 中央高校基本科研业务费专项资金项目(2022QN1044,2021YCPY0203);江苏高校优势学科建设工程项目(苏政办发〔2018〕87号)。
详细信息
    作者简介:

    周坪(1992—),男,重庆人,讲师,博士,主要研究方向为钢丝绳无损检测、智能视觉感知技术,E-mail:zhoup@cumt.edu.cn

    通讯作者:

    周公博(1985—),男,安徽桐城人,教授,博士,主要研究方向为矿山装备健康监测、无线传感器网络技术,E-mail:gbzhou@cumt.edu.cn

  • 中图分类号: TD532

Design and simulation analysis of a dual-source magnetic loop structure for mining steel wire rope

  • 摘要: 目前矿用钢丝绳损伤电磁检测方法存在主磁通检测对于局部类损伤检测精度较低,基于漏磁的局部损伤检测的定量精度不高等问题。提出了一种同时检测主磁通和漏磁的矿用钢丝绳双源磁检测方法,结合主磁通与漏磁在局部损伤检测方面的互补性,设计了双源磁检测环形筒状励磁回路和独立分离励磁回路方案。基于有限元仿真验证了2种方案的可行性,确定了以独立分离回路作为磁回路的基本结构。研究了衔铁参数、磁铁参数对磁化效果的影响和磁桥路结构参数对磁场分布的影响。结果表明:① 磁化幅值与回路数量呈正相关,与衔铁长度呈负相关,高度对磁化效果几乎没有影响。② 磁化幅值与永磁铁材料牌号、长度和厚度呈正相关,与提离值呈负相关。③ 磁化幅值与磁桥路厚度呈正相关,与空气间隙呈负相关,而提离值对磁化效果影响较小。④ 磁桥的空气间隙对磁桥路内磁通密度分布的影响较大。
    Abstract: Currently, the electromagnetic detection methods for mining steel wire ropes have limitations: the main flux detection method has low accuracy in detecting local damage, while magnetic leakage-based detection methods have limited quantitative accuracy in local damage assessment. A dual-source magnetic detection method was proposed to simultaneously detect both the main flux and magnetic leakage in mining steel wire ropes, leveraging the complementary strengths of these two methods in local damage detection. Two excitation loop designs were proposed: a double-source ring-shaped tubular excitation loop and an independent separation excitation loop. Finite element simulation was used to verify the feasibility of the two schemes, and the independent separation loop was chosen as the basic structure of the magnetic circuit. The effects of various armature parameters, such as size and magnet properties, on the magnetization performance were studied, as well as the influence of the magnetic bridge structure parameters on the magnetic field distribution. The results indicated that:① The magnetization amplitude was positively correlated with the number of loops and negatively correlated with the armature length, while the height had almost no effect on the magnetization performance; ② The magnetization amplitude was positively correlated with the material grade, length, and thickness, and negatively correlated with the lift-off distance; ③ The magnetization amplitude was positively correlated with thickness, negatively correlated with air gap size, while lift-off distance had little effect on the magnetization performance; ④ The air gap of the magnetic bridge significantly influenced the magnetic flux density distribution within the bridge circuit.
  • 图  1   双源磁检测方案原理

    Figure  1.   Principle of dual-source magnetic detection scheme

    图  2   双源磁检测环形筒状励磁回路

    Figure  2.   Ring-shaped tubular excitation loop in dual-source magnetic detection

    图  3   双源磁检测独立分离励磁回路

    Figure  3.   Independent separation magnetic circuit in dual-source magnetic detection

    图  4   环形筒状励磁回路模型

    Figure  4.   Ring-shaped tubular excitation loop model

    图  5   磁感应强度云图和钢丝绳内部磁感应强度

    Figure  5.   Magnetic induction intensity contour plot and internal magnetic induction intensity of steel wire rope

    图  6   环形筒状励磁回路的磁通密度分布

    Figure  6.   Magnetic flux density distribution of ring-shaped tubular excitation loop

    图  7   磁桥路磁通密度幅值变化

    Figure  7.   Amplitude variation of bridge magnetic flux density

    图  8   磁通密度矢量分布

    Figure  8.   Magnetic flux density vector distribution

    图  9   主衔铁磁感应强度

    Figure  9.   Magnetic induction intensity of main armature iron

    图  10   环形磁铁理想和实际充磁效果

    Figure  10.   Ideal and actual magnetization effects of ring-shaped magnet

    图  11   独立分离励磁回路模型

    Figure  11.   Independent separation loop model

    图  12   钢丝绳和磁铁的磁感应强度

    Figure  12.   Magnetic induction intensity of steel wire ropes and magnets

    图  13   独立分离励磁回路的磁桥路磁通密度

    Figure  13.   Bridge magnetic flux density of independent separation magnetic loop

    图  14   回路个数变化

    Figure  14.   Change in the number of circuits

    图  15   回路个数变化时钢丝绳磁化强度变化情况

    Figure  15.   Variation of magnetization intensity in steel wire rope with changes in the number of loops

    图  16   衔铁长度变化

    Figure  16.   Change in armature length

    图  17   衔铁长度变化时钢丝绳磁化强度变化情况

    Figure  17.   Variation of magnetization intensity in steel wire rope with changes in armature length

    图  18   不同衔铁长度的背景磁场分布情况

    Figure  18.   Background magnetic field distribution for different armature lengths

    图  19   衔铁厚度变化

    Figure  19.   Change in armature thickness

    图  20   衔铁厚度变化时钢丝绳磁化强度变化情况

    Figure  20.   Variation of magnetization intensity in steel wire rope with changes in armature thickness

    图  21   侧衔铁高度变化时钢丝绳磁化强度变化情况

    Figure  21.   Variation of magnetization intensity in steel wire rope with changes in side armature height

    图  22   衔铁宽度变化时钢丝绳磁化强度变化情况

    Figure  22.   Variation of magnetization intensity in steel wire rope with changes in armature width

    图  23   磁铁牌号变化时钢丝绳磁化强度变化情况

    Figure  23.   Variation of magnetization intensity in steel wire rope with changes in magnetic grade

    图  24   永磁铁长度变化时钢丝绳磁化强度变化情况

    Figure  24.   Variation of magnetization intensity in steel wire rope with changes in magnet length

    图  25   永磁铁厚度变化时钢丝绳磁化强度变化情况

    Figure  25.   Variation of magnetization intensity in steel wire rope with changes in magnet thickness

    图  26   永磁铁提离值变化时钢丝绳磁化强度变化情况

    Figure  26.   Variation of magnetization intensity in steel wire rope with changes in magnet lift-off value

    图  27   磁桥路提离值变化时磁通密度变化情况

    Figure  27.   Variation of magnetic flux density with changes in bridge circuit lift-off value

    图  28   不同提离值下磁力线分布

    Figure  28.   Distribution of magnetic field lines under different lift-off value

    图  29   磁桥路厚度变化时磁通密度变化情况

    Figure  29.   Variation of magnetic flux density with changes in bridge circuit thickness

    图  30   磁桥路空气隙变化时磁通密度变化情况

    Figure  30.   Variation of magnetic flux density with changes in bridge circuit air gap

    表  1   不同牌号钕铁硼永磁铁参数

    Table  1   Parameters of NdFeB magnets of different brands

    牌号 剩磁/T 内禀矫顽力/(kA·m−1) 磁能积/(kJ·m3)
    N35 1.17~1.22 955 263~287
    N38 1.22~1.25 955 287~310
    N40 1.25~1.28 955 302~326
    N42 1.28~1.32 955 318~342
    N45 1.32~1.38 955 342~366
    N48 1.38~1.42 955 366~390
    N50 1.40~1.45 955 382~406
    N52 1.43~1.48 955 398~422
    下载: 导出CSV
  • [1] 王国锋,王守军,陶荣颖,等. 矿井提升机钢丝绳外观缺陷视觉识别技术研究[J]. 工矿自动化,2024,50(5):28-35.

    WANG Guofeng,WANG Shoujun,TAO Rongying,et al. Research on visual recognition technology for appearance defects of steel wire rope in mine hoist[J]. Journal of Mine Automation,2024,50(5):28-35.

    [2] 曲诚,陈景龙,常元洪,等. 面向钢丝绳微弱损伤智能识别的多尺度注意力网络[J]. 西安交通大学学报,2021,55(7):141-150.

    QU Cheng,CHEN Jinglong,CHANG Yuanhong,et al. Multi-scale attention network for intelligent identification of weak damage on wire ropes[J]. Journal of Xi'an Jiaotong University,2021,55(7):141-150.

    [3]

    XIA Hui,YAN Rong,WU Jianbo,et al. Visualization and quantification of broken wires in steel wire ropes based on induction thermography[J]. IEEE Sensors Journal,2021,21(17):18497-18503. DOI: 10.1109/JSEN.2021.3088158

    [4] 张俊,葛世荣,王大刚,等. 基于微动磨损预测矿井提升钢丝绳安全系数[J]. 机械工程学报,2019,55(7):110-118. DOI: 10.3901/JME.2019.07.110

    ZHANG Jun,GE Shirong,WANG Dagang,et al. Prediction of the safety factor of mine hoisting rope based on fretting wear[J]. Journal of Mechanical Engineering,2019,55(7):110-118. DOI: 10.3901/JME.2019.07.110

    [5]

    ZHOU Ping,ZHOU Gongbo,WANG Houlian,et al. Automatic detection of industrial wire rope surface damage using deep learning-based visual perception technology[J]. IEEE Transactions on Instrumentation and Measurement,2020. DOI:10.1109/tim.2020. 3011762.

    [6] 李军霞,李聪豪,焦少妮,等. 矩形线圈钢丝绳捻距涡流检测研究[J]. 机械工程学报,2020,56(12):34-41. DOI: 10.3901/JME.2020.12.034

    LI Junxia,LI Conghao,JIAO Shaoni,et al. Research on eddy current testing of the lay length of wire rope with rectangular coil[J]. Journal of Mechanical Engineering,2020,56(12):34-41. DOI: 10.3901/JME.2020.12.034

    [7]

    LIU Shiwei,SUN Yanhua,JIANG Xiaoyuan,et al. A new MFL imaging and quantitative nondestructive evaluation method in wire rope defect detection[J]. Mechanical Systems and Signal Processing,2022,163. DOI: 10.1016/J.YMSSP.2021.108156.

    [8]

    LIU Shiwei,SUN Yanhua,JIANG Xiaoyuan,et al. A review of wire rope detection methods,sensors and signal processing techniques[J]. Journal of Nondestructive Evaluation,2020,39(4). DOI: 10.1007/s10921-020-00732-y.

    [9] 田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122.

    TIAN Jie,TIAN Zhuang,GUO Hongfei,et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Industry and Mine Automation,2022,48(3):118-122.

    [10] 王红尧,田劼. 基于有限元分析的矿用钢丝绳聚磁检测方法[J]. 煤炭学报,2013,38(增刊1):256-260.

    WANG Hongyao,TIAN Jie. Method of magnetic collect detection for coal mine wire rope base on finite element analysis[J]. Journal of China Coal Society,2013,38(S1):256-260.

    [11] 任建浩,陈实,薛家杰,等. 基于1D−CNN−SVM的钢丝绳损伤识别方法[J]. 无损检测,2024,46(6):24-29. DOI: 10.11973/wsjc202406005

    REN Jianhao,CHEN Shi,XUE Jiajie,et al. Wire rope damage identification method based on 1D-CNN-SVM[J]. Nondestructive Testing,2024,46(6):24-29. DOI: 10.11973/wsjc202406005

    [12] 王美萱,刘志亮,杨磊磊,等. 基于PCB线圈的钢丝绳金属横截面积损失检测方法[J]. 电子科技大学学报,2024,53(3):352-358.

    WANG Meixuan,LIU Zhiliang,YANG Leilei,et al. A LMA detection method based on PCB coil for wire ropes[J]. Journal of University of Electronic Science and Technology of China,2024,53(3):352-358.

    [13] 晏小兰. 钢丝绳金属截面积损伤定量检测关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2019.

    YAN Xiaolan . Study on key technology of quantitative detection on wire rope metallic cross-sectional area damage[D]. Harbin:Harbin Institute of Technology,2019.

    [14] 李建辉,孙显彬,刘伦明,等. 基于漏磁检测的矿用钢丝绳励磁装置[J]. 工矿自动化,2023,49(7):114-119.

    LI Jianhui,SUN Xianbin,LIU Lunming,et al. Excitation device for mining steel wire rope based on magnetic flux leakage detection[J]. Journal of Mine Automation,2023,49(7):114-119.

    [15]

    MA Yilai,HE Renyang,CHEN Jinzhong. A method for improving SNR of drill pipe leakage flux testing signals by means of magnetic concentrating effect[J]. IEEE Transactions on Magnetics,2015,51(9):1-7.

    [16]

    ZHOU Zuopu,LIU Zhiliang. Fault diagnosis of steel wire ropes based on magnetic flux leakage imaging under strong shaking and strand noises[J]. IEEE Transactions on Industrial Electronics,2021,68(3):2543-2553. DOI: 10.1109/TIE.2020.2973874

    [17]

    ZHANG Donglai,ZHANG Enchao,YAN Xiaolan. Quantitative method for detecting internal and surface defects in wire rope[J]. NDT & E International,2021,119. DOI: 10.1016/J.NDTEINT.2021.102405.

    [18] 田劼,周俊莹,王红尧,等. 钢丝绳探伤多回路励磁检测方法研究[J]. 矿业科学学报,2018,3(2):180-185.

    TIAN Jie,ZHOU Junying,WANG Hongyao,et al. Research on multiloop magnetic detection method for steel wire rope detection[J]. Journal of Mining Science and Technology,2018,3(2):180-185.

    [19] 窦连城. 钢丝绳内外层断丝损伤定量识别研究[D]. 青岛:青岛理工大学,2021.

    DOU Liancheng. Research on quantitative identification method of internal and external broken wires in steel wire rope[D]. Qingdao:Qingdao University of Technology,2021.

    [20] 王浩宇. 矿用钢丝绳缺陷漏磁检测系统研究[D]. 徐州:中国矿业大学,2023.

    WANG Haoyu. Research on magnetic leakage detection system for defects of mining wire rope[D]. Xuzhou:China University of Mining and Technology,2023.

    [21] 田劼,赵彩跃. 基于3D Maxwell的钢丝绳漏磁检测仿真研究[J]. 煤炭工程,2020,52(7):152-156.

    TIAN Jie,ZHAO Caiyue. Simulation on magnetic leakage detection of steel wire rope based on 3D Maxwell[J]. Coal Engineering,2020,52(7):152-156.

图(30)  /  表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-21
  • 修回日期:  2024-10-27
  • 网络出版日期:  2024-09-13
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回