混合煤矸放落态势特征研究

单鹏飞, 杨通, 孙浩强, 郗博佳

单鹏飞,杨通,孙浩强,等. 混合煤矸放落态势特征研究[J]. 工矿自动化,2024,50(9):66-74. DOI: 10.13272/j.issn.1671-251x.2024070058
引用本文: 单鹏飞,杨通,孙浩强,等. 混合煤矸放落态势特征研究[J]. 工矿自动化,2024,50(9):66-74. DOI: 10.13272/j.issn.1671-251x.2024070058
SHAN Pengfei, YANG Tong, SUN Haoqiang, et al. Research on the characteristics of the falling behavior of mixed coal and gangue[J]. Journal of Mine Automation,2024,50(9):66-74. DOI: 10.13272/j.issn.1671-251x.2024070058
Citation: SHAN Pengfei, YANG Tong, SUN Haoqiang, et al. Research on the characteristics of the falling behavior of mixed coal and gangue[J]. Journal of Mine Automation,2024,50(9):66-74. DOI: 10.13272/j.issn.1671-251x.2024070058

混合煤矸放落态势特征研究

基金项目: 国家自然科学基金资助项目(52274138,52394191);榆林高新区科技计划项目(ZD-2021-01)。
详细信息
    作者简介:

    单鹏飞(1987—),男,安徽淮北人,教授,博士,主要研究方向为智能综放开采理论与技术,E-mail:shanpengfei@xust.edu.cn

  • 中图分类号: TD853.34

Research on the characteristics of the falling behavior of mixed coal and gangue

  • 摘要: 传统的基于图像检测技术的放顶煤过程中煤流动态特性研究多侧重于某一特定阶段的图像分析,未结合全阶段的动态特性进行综合分析;现有研究较少将放顶煤过程中上覆岩层的松散区变化与放煤过程中的煤矸分离和煤流特性相结合,缺乏对放煤过程的全局性系统分析。针对上述问题,对放顶煤过程中的煤流动态特性、煤矸分离效果及上覆岩层松散区凹陷变化进行了系统研究。首先,提出了一种基于双光流网络的放顶煤过程动态分析方法。实验结果表明:不同放煤方案下,放煤速度不随放煤形式和规律的变化而改变,平均检测准确率随着放煤口数量的增多而提高,尤其在不同放煤步距阶段呈明显线性增长;顶煤放出率与平均检测准确率呈正相关关系,验证了该方法在放顶煤过程监测中的有效性。其次,利用OpenCV技术对上覆岩层松散区凹陷面积进行实验分析。结果表明,初始放煤阶段松散区凹陷面积急剧增长,随后随时间推移逐渐趋于稳定;通过凹陷面积的动态变化趋势,可有效判断顶煤的放出过程,实现透明化放煤监测。最后,结合称重实验数据,分析了放煤量、放出率与含矸率之间的关系。结果表明,初始放煤阶段纯煤放出量最大,周期放煤阶段纯煤放出量趋于稳定,含矸率则随着放煤口数量的增多而减少。该结果进一步揭示了放煤方式对煤矸分离和顶煤放出率的影响。
    Abstract: Traditional studies on the dynamic characteristics of coal flow during the top coal caving process, based on image detection technology, have primarily focused on specific-stage image analysis, lacking a comprehensive analysis of dynamic characteristics across all stages. Existing research has rarely integrated the changes in the loose zone of the overlying strata with coal and gangue separation and coal flow characteristics during top coal caving, resulting in a lack of systematic and holistic analysis of the entire coal caving process. In response to these issues, this study systematically investigated coal flow dynamics, coal and gangue separation effectiveness, and the subsidence of the loose zone in the overlying strata during the top coal caving. First, this paper proposed a dynamic analysis method for the top coal caving process based on a dual optical flow network. The results indicated that the coal caving speed was not affected by the caving method and pattern, and that average detection accuracy increased with the number of caving openings, exhibiting a notably linear increase during the periodic caving stage. The release rate of top coal showed a positive correlation with average detection accuracy, validating the effectiveness of the method in the top coal caving process monitoring. Second, OpenCV technology was used to conduct experimental analysis on the subsidence area of the loose zone in the overlying strata. Results demonstrated that the subsidence area grew sharply during the initial caving stage and gradually stabilized over time. The dynamic changes in the subsidence area effectively indicated the progression of top coal release, enabling transparent monitoring of release process. Finally, based on data from weighing experiments, the relationships among caving amount, release rate, and gangue content were analyzed. Results showed that the amount of pure coal release was the highest in the initial caving stage and stabilized in the periodic caving stage, while gangue content decreased as the number of caving openings increased. These findings further reveal the influence of caving methods on coal and gangue separation and the release rate of top coal.
  • 图  1   实验平台

    Figure  1.   Experimental platform

    图  2   煤矸破碎试样制备

    Figure  2.   Preparation of coal and gangue crushing sample

    图  3   FlowNet−SD模型结构

    Figure  3.   FlowNet-SD model framework

    图  4   不同放煤方案顶煤放落监测情况

    Figure  4.   Monitoring of top coal falling under different coal discharge schemes

    图  5   顶煤放出率与平均准确率关系

    Figure  5.   Relationship between top coal release rate and average accuracy

    图  6   不同阶段顶煤松散区凹陷面

    Figure  6.   Surface area of the top coal in the loose state at different stages

    图  7   松散区凹陷面积变化趋势及拟合曲线

    Figure  7.   Trend and fitting curve of depression surface area in loose area

    图  8   不同方案在不同放煤步距下放出的纯煤量、矸石量、顶煤放出率及含矸率对比

    Figure  8.   Variation characteristics of the amount of pure coal released, the amount of gangue, the top coal release rate and the gangue content at different advancement degrees

    表  1   4种放煤方案结果统计

    Table  1   Statistics of results for four coal discharge plans

    放煤方案 统计类别 初始放煤阶段 不同放煤步距阶段
    1 2 3 4 5
    方案1(一组一放)顶煤放出率/%449.9235.0646.3951.5250.5649.81
    含矸率/%0.636.865.014.845.555.37
    监测时间/s18.5512.8310.9210.859.9611.05
    平均准确率/%72.1578.5676.9076.3777.2877.51
    平均漏检率/%8.1712.7911.4310.6811.8911.65
    平均监测速率/(帧·s−128.5528.3427.6928.0526.9627.49
    方案2(二组一放)顶煤放出率/%325.7531.7749.4550.0948.17
    含矸率/%0.696.394.284.314.36
    监测时间/s16.1910.039.759.429.78
    平均准确率/%78.0279.9579.7380.0680.19
    平均漏检率/%8.2212.1610.2110.3410.58
    平均监测速率/(帧·s−126.9027.3227.5528.0428.35
    方案3(三组一放)顶煤放出率/%247.2832.3541.9248.97
    含矸率/%0.745.654.223.72
    监测时间/s13.678.549.038.87
    平均准确率/%79.9380.2980.9481.09
    平均漏检率/%8.3512.0610.159.88
    平均监测速率/(帧·s−128.3528.1726.5228.30
    方案4(五组一放)顶煤放出率/%203.7637.1549.32
    含矸率/%0.642.932.27
    监测时间/s8.235.595.72
    平均准确率/%81.2681.6882.56
    平均漏检率/%8.199.298.89
    平均监测速率/(帧·s−127.6627.9228.13
    下载: 导出CSV

    表  2   不同放煤方案在不同放煤步距下的煤矸放出量

    Table  2   The amount of coal gangue released under different coal discharge methods and different coal discharge steps

    放煤
    方案
    统计类别 初始放
    煤阶段
    不同放煤步距阶段
    1 2 3 4 5
    方案1
    (一组
    一放)
    纯煤质量/g20 0701 5632 069.42 298.252 255.432 221.97
    矸石质量/g126.4115.08109.23114.76132.5119.21
    放出率/%449.9235.0646.3951.5250.5649.81
    含矸率%0.636.865.014.845.555.37
    方案2
    (二组
    一放)
    纯煤质量/g22 4562 190.83 408.73 452.983 320.63
    矸石质量/g156.7149.44152.29155.37151.34
    放出率/%325.7531.7749.4550.0948.17
    含矸率%0.696.394.284.314.36
    方案3
    (三组
    一放)
    纯煤质量/g23 1852 709.73 511.324 101.84
    矸石质量/g173.65162.33154.78158.36
    放出率/%247.2832.3541.9248.97
    含矸率%0.745.654.223.72
    方案4
    (五组
    一放)
    纯煤质量/g22 971.144 188.25 560.2
    矸石质量/g146.82126.33128.90
    放出率/%203.7637.1549.32
    含矸率%0.642.932.27
    下载: 导出CSV
  • [1] 王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43-51.

    WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43-51.

    [2] 庞义辉,关书方,姜志刚,等. 综放工作面围岩控制与智能化放煤技术现状及展望[J/OL]. 工矿自动化:1-8[2024-10-07]. https://doi.org/10.13272/j.issn.1671-251x.18211.

    PANG Yihui,GUAN Shufang,JIANG Zhigang,et al. Current situation and prospect of surrounding rock control and intelligent coal discharge technology in fully mechanized working face[J/OL]. Journal of Mine Automation:1-8[2024-10-07]. https://doi.org/10.13272/j.issn.1671-251x.18211.

    [3] 姜恩宏. 煤矿综合机械化放顶煤开采工艺的应用研究[J]. 内蒙古煤炭经济,2023(18):163-165. DOI: 10.3969/j.issn.1008-0155.2023.18.055

    JIANG Enhong. Research on the application of comprehensive mechanised top coal mining technology in coal mines[J]. Inner Mongolia Coal Economy,2023(18):163-165. DOI: 10.3969/j.issn.1008-0155.2023.18.055

    [4] 庞成龙. 综采放顶煤工艺研究与应用[J]. 山西化工,2024,44(7):203-204,207.

    PANG Chenglong. Research and application of fully mechanised top coal caving technology[J]. Shanxi Chemical Industry,2024,44(7):203-204,207.

    [5] 周世宇. 潘津矿极近距离特厚煤层覆岩破坏与顶煤冒放规律研究[D]. 焦作:河南理工大学,2023.

    ZHOU Shiyu. Study on overburden failure and caving law of top coal in extremely short distance thick coal seam in Panjin Mine[D]. Jiaozuo:Henan Polytechnic University,2023.

    [6] 王爱国. 综放开采顶煤成拱机理及控制技术[J]. 煤矿安全,2014,45(8):214-216,220.

    WANG Aiguo. Top-coal arching mechanism and control technology in fully-mechanized caving mining[J]. Safety in Coal Mines,2014,45(8):214-216,220.

    [7] 王家臣,杨胜利,李良晖,等. 智能放煤理论与技术研究进展[J/OL]. 工矿自动化:1-14[2024-10-10]. https://doi.org/10.13272/j.issn.1671-251x.18213.

    WANG Jiachen,YANG Shengli,LI Lianghui,et al. Research progress on theory and technology of intelligent coal drawing[J/OL]. Journal of Mine Automation:1-14[2024-10-10]. https://doi.org/10.13272/j.issn.1671-251x.18213.

    [8] 韩立国. 综合放顶煤开采煤矸识别关键技术研究[D]. 阜新:辽宁工程技术大学,2023.

    HAN Liguo. Research on key technology of coal gangue identification in comprehensive caving coal mining[D]. Fuxin:Liaoning Technical University,2023.

    [9] 刘国方,宋选民,李昊城,等. 综放开采顶煤破碎放煤工艺参数优化研究[J]. 中国矿业,2021,30(12):90-97. DOI: 10.12075/j.issn.1004-4051.2021.12.001

    LIU Guofang,SONG Xuanmin,LI Haocheng,et al. Research on optimization of top coal caving technology parameters in fully mechanized top coal caving[J]. China Mining Magazine,2021,30(12):90-97. DOI: 10.12075/j.issn.1004-4051.2021.12.001

    [10] 单海超,邓高鹏. 基于AI智能摄像监测的煤流系统异物识别控制技术研究与应用[J]. 河南科技,2021,40(22):16-18. DOI: 10.3969/j.issn.1003-5168.2021.22.010

    SHAN Haichao,DENG Gaopeng. Research and application of foreign matter identification and control technology in coal flow system based on AI intelligent camera monitoring[J]. Journal of Henan Science and Technology,2021,40(22):16-18. DOI: 10.3969/j.issn.1003-5168.2021.22.010

    [11] 段雍. 基于图像的煤矸识别和定位方法研究与实现[D]. 西安:西安科技大学,2020.

    DUAN Yong. Research and realization identification and positioning method of coal and gangue based on image[D]. Xi'an:Xi'an University of Science and Technology,2020.

    [12] 凌铃. 基于深度学习的煤矸激光散斑图像识别方法研究[D]. 西安:西安理工大学,2024.

    LING Ling. Research on coal and gangue laser speckle image recognition method based on deep learning[D]. Xi'an:Xi'an University of Technology,2024.

    [13] 沈宁,窦东阳,杨程,等. 基于机器视觉的煤矸石多工况识别研究[J]. 煤炭工程,2019,51(1):120-125.

    SHEN Ning,DOU Dongyang,YANG Cheng,et al. Research on multi-condition identification of coal and gangue based on machine vision[J]. Coal Engineering,2019,51(1):120-125.

    [14] 张蕴韬,杨志全,李壮,等. 基于三维精细化建模有限差分计算的露天矿边坡稳定性研究[J]. 有色金属(矿山部分),2023,75(4):64-69. DOI: 10.3969/j.issn.1671-4172.2023.04.010

    ZHANG Yuntao,YANG Zhiquan,LI Zhuang,et al. Evaluation of slope stability of open pit mine based on 3D refined modeling with finite difference calculation[J]. Nonferrous Metals(Mining Section),2023,75(4):64-69. DOI: 10.3969/j.issn.1671-4172.2023.04.010

    [15] 陈曦. 安太堡边帮开采区9504~9508工作面地表移动与地表水防治措施研究[D]. 北京:中国地质大学(北京),2019.

    CHEN Xi. Study on surface movement and surface water prevention and control measures for working faces of 9504-9508 in Antaibao Mining Area[D]. Beijing:China University of Geosciences Beijing,2019.

    [16] 王家臣,魏立科,张锦旺,等. 综放开采顶煤放出规律三维数值模拟[J]. 煤炭学报,2013,38(11):1905-1911.

    WANG Jiachen,WEI Like,ZHANG Jinwang,et al. 3-D numerical simulation on the top-coal movement law under caving mining technique[J]. Journal of China Coal Society,2013,38(11):1905-1911.

    [17] 乔明. 地表沉陷与上覆岩层移动规律数值研究[J]. 价值工程,2024,43(28):63-66.

    QIAO Ming. Numerical study of surface subsidence and overlying strata movement[J]. Value Engineering,2024,43(28):63-66.

    [18] 张建,亓佳利,李长青. 厚煤层开采上覆岩层移动与应力分布特征研究[J]. 山东煤炭科技,2024,42(6):139-143,154. DOI: 10.3969/j.issn.1005-2801.2024.06.028

    ZHANG Jian,QI Jiali,LI Changqing. Research on movement and stress distribution characteristics of overlying strata in thick coal seam mining[J]. Shandong Coal Science and Technology,2024,42(6):139-143,154. DOI: 10.3969/j.issn.1005-2801.2024.06.028

    [19] 刘闯,李化敏,周英,等. 综放工作面多放煤口协同放煤方法[J]. 煤炭学报,2019,44(9):2632-2640.

    LIU Chuang,LI Huamin,ZHOU Ying,et al. Method of synergetic multi-windows caving in longwall top coal caving working face[J]. Journal of China Coal Society,2019,44(9):2632-2640.

    [20] 张锦旺,王家臣,魏炜杰,等. 块度级配对散体顶煤流动特性影响的试验研究[J]. 煤炭学报,2019,44(4):985-994.

    ZHANG Jinwang,WANG Jiachen,WEI Weijie,et al. Experimental investigation on the effect of size distribution on the flow characteristics of loose top coal[J]. Journal of China Coal Society,2019,44(4):985-994.

    [21] 张新战,张帅,崔峰. 急倾斜大段高综放开采煤矸混合流动规律研究[J]. 煤炭科学技术,2022,50(增刊2):16-25.

    ZHANG Xinzhan,ZHANG Shuai,CUI Feng. Similarity simulation study on mixed flow law of coal gangue in steep section and high fully mechanized caving mining[J]. Coal Science and Technology,2022,50(S2):16-25.

  • 期刊类型引用(18)

    1. 段林川,罗文柯,张大伟,周加庆,唐建华. 煤层瓦斯有效抽采半径与布孔间距的数值模拟. 矿业工程研究. 2023(01): 36-41 . 百度学术
    2. 李桂明,李绍泉,李思光,李绍鹏,尚宇琦. 基于SF6气体示踪法的顺层钻孔有效抽采半径测定与效果评价. 煤矿现代化. 2023(04): 27-31 . 百度学术
    3. 何清波,王玉龙,姜亦武,黄义通,杨俊生,马西仃,陈旭,赵鹏翔. 顺层钻孔预抽巨厚煤层瓦斯影响因素分析及工程实践. 煤炭技术. 2023(08): 139-144 . 百度学术
    4. 常明,王军,陈现辉. 本煤层顺层钻孔布孔间距模拟及应用研究. 煤炭技术. 2023(10): 134-136 . 百度学术
    5. 李斗. 石门揭煤预抽钻孔参数数值模拟研究及应用. 采矿技术. 2023(06): 248-252 . 百度学术
    6. 魏晓,刘雄,蒋旭刚. 采动条件下顺层低渗透瓦斯抽采数值模拟研究. 采矿技术. 2022(06): 73-77+81 . 百度学术
    7. 徐刚,张剀文,范亚飞. 叠加效应影响下钻孔有效抽采半径的数值模拟及布孔间距优化. 矿业安全与环保. 2021(01): 91-96 . 百度学术
    8. 薛彦平. 近距离煤层群综采工作面瓦斯治理优选措施. 工矿自动化. 2021(02): 98-103 . 本站查看
    9. 郭欣,李克文,令狐建设,李耀谦. 瓦斯有效抽采半径影响因素的数值模拟研究. 煤炭技术. 2021(05): 119-122 . 百度学术
    10. 阴昊阳,许石青,郑连军. 考虑基质多尺度扩散的双孔隙介质模型. 矿业工程研究. 2021(01): 62-70 . 百度学术
    11. 段会军. 高强度开采综放工作面上隅角瓦斯联合抽采实践. 工矿自动化. 2020(02): 1-5+38 . 本站查看
    12. 王小朋. 赵庄煤业低透气性煤层有效抽采半径测定分析. 内蒙古煤炭经济. 2020(02): 21-22+25 . 百度学术
    13. 程鹏鹏. 关于顺层钻孔瓦斯抽采半径及布孔间距分析. 山西化工. 2020(03): 90-91+95 . 百度学术
    14. 申忠生,刘明义. 霍尔辛赫煤矿松软煤层瓦斯钻孔维护装置研发与应用. 现代矿业. 2020(09): 173-176+184 . 百度学术
    15. 刘震,王文迪,陈旦旦. 瓦斯抽采顺层钻孔封孔参数数值计算分析. 矿业研究与开发. 2020(12): 100-105 . 百度学术
    16. 陈建强,胡延伟,刘昆轮,王刚,范酒源. 急倾斜特厚煤层水平分段开采瓦斯预抽技术. 科学技术与工程. 2020(34): 14034-14038 . 百度学术
    17. 桑乃文,杨胜强,宋亚伟. 平行钻孔有效抽采半径及合理钻孔间距研究. 工矿自动化. 2019(06): 58-62 . 本站查看
    18. 王腾飞. 王坪矿顺层瓦斯钻孔有效抽采半径的确定. 山东煤炭科技. 2019(06): 90-92+98 . 百度学术

    其他类型引用(12)

图(8)  /  表(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  25
  • PDF下载量:  15
  • 被引次数: 30
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-10-09
  • 网络出版日期:  2024-10-17
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回