面向矿山救援的UWB雷达生命信息识别研究现状与展望

郑学召, 马扬, 黄渊, 蔡国斌, 丁文

郑学召,马扬,黄渊,等. 面向矿山救援的UWB雷达生命信息识别研究现状与展望[J]. 工矿自动化,2024,50(7):12-20. DOI: 10.13272/j.issn.1671-251x.2024060024
引用本文: 郑学召,马扬,黄渊,等. 面向矿山救援的UWB雷达生命信息识别研究现状与展望[J]. 工矿自动化,2024,50(7):12-20. DOI: 10.13272/j.issn.1671-251x.2024060024
ZHENG Xuezhao, MA Yang, HUANG Yuan, et al. Research status and prospects of UWB radar life information recognition for mine rescue[J]. Journal of Mine Automation,2024,50(7):12-20. DOI: 10.13272/j.issn.1671-251x.2024060024
Citation: ZHENG Xuezhao, MA Yang, HUANG Yuan, et al. Research status and prospects of UWB radar life information recognition for mine rescue[J]. Journal of Mine Automation,2024,50(7):12-20. DOI: 10.13272/j.issn.1671-251x.2024060024

面向矿山救援的UWB雷达生命信息识别研究现状与展望

基金项目: 国家自然科学基金资助项目(52174197);陕西省重点研发计划资助项目(2023-YBSF-101);陕西省科协青年人才托举计划项目(20240205)。
详细信息
    作者简介:

    郑学召(1977—),男,新疆焉耆人,教授,博士,研究方向为应急技术与管理、矿山防灭火技术,E-mail:zhengxuezhao@xust.edu.cn

  • 中图分类号: TD67

Research status and prospects of UWB radar life information recognition for mine rescue

  • 摘要: 超宽带(UWB)雷达可穿透煤岩等非磁性介质,实现坍塌物后人员生命信息探测。因矿井环境复杂,加载生命体征信号的UWB雷达探测回波易被环境噪声、杂波信号干扰,且人体目标信息识别困难。介绍了UWB雷达生命探测系统原理及其在矿山救援中的应用。从UWB雷达生命信息提取、动静态人体目标识别和生命体量化3个方面,对UWB雷达生命信息识别研究现状进行了归纳。指出目前UWB雷达生命探测技术在矿山救援领域应用存在的问题:① 针对井下坍塌环境中非平稳信号与环境噪声等的滤除方法研究较少。② 针对运动(或微动)目标姿势、行为、生命状态等信息的提取与表征方法有待改进,人体生命信息识别模型尚未完善且模型间特征关联性较低。③ 针对多目标产生的“混叠”问题缺乏解决方案。对面向矿山救援的UWB雷达生命信息识别研究方向作出展望:① 不断优化多类矿山灾变环境的噪声与杂波自适应滤除方法。② 构建适用于矿山救援领域的人体生命信息识别模型。③ 进一步提高对矿井遮蔽物后多目标的量化能力。④ 深入探究UWB雷达最佳探测频段确定方法。
    Abstract: Ultra-wide band (UWB) radar can penetrate non-magnetic media such as coal and rock to detect life information of personnel after collapse. Due to the complex mining environment, UWB radar loaded with vital sign signals is prone to interference from environmental noise and clutter signals. It is difficult to recognize human subject information. This paper introduces the principle of UWB radar life detection system and its application in mine rescue. This paper summarizes the current research status of UWB radar life information recognition from three aspects: UWB radar life information extraction, dynamic and static human object recognition, and life quantification. This paper points out the current issues with the application of UWB radar life detection technology in the field of mine rescue. ① There is limited research on filtering methods for non-stationary signals and environmental noise in underground collapse environments. ② The extraction and representation methods for posture, behavior, life status, and other information of moving (or micro moving) objects need to be improved. The human life information recognition model is not yet perfect and the feature correlation between models is low. ③ There is a lack of solutions to the "overlapping" problem caused by multiple objects. This paper proposes the prospects for the research direction of UWB radar life information recognition for mine rescue. ① It is suggested to continuously optimize noise and clutter adaptive filtering methods for multiple types of mine disaster environments. ② It is suggested to construct a human life information recognition model suitable for the field of mine rescue. ③ It is suggested to further improve the quantification capability of multi-object after mine shelter. ④ It is suggested to conduct depth exploration of the method for determining the optimal detection frequency band for UWB radar.
  • 图  1   UWB雷达生命探测系统组成

    Figure  1.   Composition of UWB radar life detection system

    图  2   UWB雷达生命探测系统现场应用

    Figure  2.   Field application of UWB radar life detection system

    图  3   雷达探测人体呼吸、心跳信号

    Figure  3.   Radar detecting respiration and heartbeat signals

    图  4   不同目标数量回波信号[40]

    Figure  4.   Echo signals with different numbers of objects[40]

    图  5   基于UWB雷达生命信息识别的研究展望

    Figure  5.   Research prospect on UWB radar life information recognition

  • [1] 程磊,孙洁. 2016—2022年我国煤矿事故统计与规律分析[J]. 煤炭工程,2023,55(11):125-129.

    CHENG Lei,SUN Jie. Statistics and law analysis of coal mine accidents in China from 2016 to 2022[J]. Coal Engineering,2023,55(11):125-129.

    [2] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297-322.

    WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297-322.

    [3] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15.

    LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1-15.

    [4] 邹祖杰,凡东,刘庆修,等. 矿山地面大直径钻孔救援提升装备研制[J]. 煤炭科学技术,2017,45(12):160-165.

    ZOU Zujie,FAN Dong,LIU Qingxiu,et al. Research and development on rescue lifting equipment of large diameter borehole at mine ground[J]. Coal Science and Technology,2017,45(12):160-165.

    [5] 郑学召,王虎,文虎,等. 矿井钻孔救援通信技术的研究进展及趋势[J]. 工矿自动化,2017,43(9):41-45.

    ZHENG Xuezhao,WANG Hu,WEN Hu,et al. Research progress and tendency of mine drilling rescue communication technology[J]. Industry and Mine Automation,2017,43(9):41-45.

    [6] 郑学召,李诚康,文虎,等. 矿井灾害救援生命信息探测技术及装备综述[J]. 煤矿安全,2017,48(12):116-119.

    ZHENG Xuezhao,LI Chengkang,WEN Hu,et al. Summary of mine disaster rescue life information detection technology and equipment[J]. Safety in Coal Mines,2017,48(12):116-119.

    [7] 田宏亮,邹祖杰,郝世俊,等. 矿山灾害生命保障救援通道快速安全构建关键技术与装备[J]. 煤田地质与勘探,2022,50(11):1-13.

    TIAN Hongliang,ZOU Zujie,HAO Shijun,et al. Key technologies and equipment of quickly and safely building life support and rescue channel in mine disaster[J]. Coal Geology & Exploration,2022,50(11):1-13.

    [8] 郑学召,孙梓峪,张嬿妮,等. 面向钻孔救援的超宽带雷达技术研究现状与方向[J]. 工矿自动化,2021,47(8):20-26.

    ZHENG Xuezhao,SUN Ziyu,ZHANG Yanni,et al. Research status and direction of ultra-wide band radar technology for borehole rescue[J]. Industry and Mine Automation,2021,47(8):20-26.

    [9] 高广伟,张禄华. 大直径钻孔救援的实践与思考——以山东平邑“12·25”石膏矿坍塌事故救援为例[J]. 中国应急管理,2016(3):74-75.

    GAO Guangwei,ZHANG Luhua. Practice and reflection on rescue of large diameter drilling:taking the rescue of the "12·25" gypsum mine collapse accident in Pingyi,Shandong as an example[J]. China Emergency Management,2016(3):74-75.

    [10] 马宏伟,马琨,田海波. 矿山钻孔救援探测机器人研究进展[J]. 工矿自动化,2019,45(2):24-29.

    MA Hongwei,MA Kun,TIAN Haibo. Research progress of mine drilling rescue detection robots[J]. Industry and Mine Automation,2019,45(2):24-29.

    [11] 路国华,杨国胜,王健琪,等. 基于微功率超宽带雷达检测人体生命信号的研究[J]. 医疗卫生装备,2005(2):15-16,18. DOI: 10.3969/j.issn.1003-8868.2005.02.007

    LU Guohua,YANG Guosheng,WANG Jianqi,et al. The study on detection of the life signals of human subject based on micropower UWB radar[J]. Chinese Medical Equipment Journal,2005(2):15-16,18. DOI: 10.3969/j.issn.1003-8868.2005.02.007

    [12] 李欣欣. 遮蔽环境下基于超宽带雷达的生命探测技术研究[D]. 兰州:兰州理工大学,2023.

    LI Xinxin. Research on life detection technology based on ultra-wideband radar in shading environment[D]. Lanzhou:Lanzhou University of Technology,2023.

    [13]

    YANG Degui,ZHU Zhengliang,ZHANG Junchao,et al. The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar[J]. Sensors,2021,21(2):402-402. DOI: 10.3390/s21020402

    [14] HUANG Ling, WANG Zhao, TIAN Ming, et al. Influence of parameters on radar localization of human target under complex shielding environment[C]. iCatse International Conference on Information Science and Applications, Seoul, 2020: 3-9.

    HUANG Ling,WANG Zhao,TIAN Ming,et al. Influence of parameters on radar localization of human target under complex shielding environment[C]. iCatse International Conference on Information Science and Applications, Seoul, 2020:3-9.

    [15]

    ZHANG Jingwen,QI Qingjie,CHENG Huifeng,et al. A multi-target localization and vital sign detection method using ultra-wide band radar[J]. Sensors (Basel,Switzerland),2023,23(13). DOI: 10.3390/S23135779.

    [16]

    XUE Huijun,LIU Miao,LYU Hao,et al. A dynamic clutter interference suppression method for multiple static human targets detection using ultra‐wideband radar[J]. Microwave and Optical Technology Letters,2019,61(12):2854-2865. DOI: 10.1002/mop.31973

    [17]

    YOON Y S,AMIN M G. Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3192-3208. DOI: 10.1109/TGRS.2009.2019728

    [18]

    SOLIMENE R,CUCCARO A. Front wall clutter rejection methods in TWI[J]. IEEE Geoscience and Remote Sensing Letters,2014,11(6):1158-1162. DOI: 10.1109/LGRS.2013.2288491

    [19]

    LIN C H. Arteriovenous shunt stenosis assessment based on empirical mode decomposition and 1D-convolutional neural network:dlinical trial stage[J]. Biomedical Signal Processing and Control,2021,66:102461-102468. DOI: 10.1016/j.bspc.2021.102461

    [20] 康守强,胡明武,王玉静,等. 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报,2019,39(3):764-772,955.

    KANG Shouqiang,HU Mingwu,WANG Yujing,et al. Fault diagnosis method of a rolling bearing under variable working conditions based on feature transfer learning[J]. Proceedings of the CSEE,2019,39(3):764-772,955.

    [21] 王炜. 小波阈值消噪法在雷达信号检测中去噪效果的分析[J]. 山东工业技术,2020(4):40-45.

    WANG Wei. Analysis of denoising effect of wavelet threshold denoising method in radar signal detection[J]. Shandong Industrial Technology,2020(4):40-45.

    [22] 张杨. 非接触生命探测系统中干扰抑制技术的研究[D]. 西安:第四军医大学,2006.

    ZHANG Yang. Research for controlling methods of interference on non-contact life parameter detecting system[D]. Xi'an:Fourth Military Medical University,2006.

    [23]

    KHAN F,CHOI J W,CHO S H. Vital sign monitoring of a non-stationary human through IR-UWB radar[C]. The 4th IEEE International Conference on Network Infrastructure and Digital Content,Beijing,2014:511-514.

    [24]

    LIANG Xiaolin,ZHANG Hao,YE Shengbo,et al. Improved denoising method for through-wall vital sign detection using UWB impulse radar[J]. Digital Signal Processing,2017,74:72-93.

    [25] 陶启明. 基于超宽带雷达的生命特征信息提取技术研究[D]. 西安:西安电子科技大学,2022.

    TAO Qiming. Vital sign monitoring using ultra wide band radar[D]. Xi'an:Xi'an University of Electronic Science and Technology,2022.

    [26]

    MORGAN D R,ZIERDT M G. Novel signal processing techniques for Doppler radar cardiopulmonary sensing[J]. Signal Processing,2008,89(1):45-66.

    [27]

    KHAN F,CHO S H. A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar[J]. Sensors,2017,17(2):290-290. DOI: 10.3390/s17020290

    [28]

    KAI S K,JIAU C L,LEI L P,et al. Detection of breathing and heart rates in UWB radar sensor data using FVPIEF-based two-layer EEMD[J]. IEEE Sensors Journal,2019,19(2):774-784. DOI: 10.1109/JSEN.2018.2878607

    [29]

    NIXON M S,CARTER J N,SHUTLER J D,et al. New advances in automatic gait recognition[J]. Information Security Technical Report,2002,7(4):23-35. DOI: 10.1016/S1363-4127(02)00404-1

    [30]

    CHEN V C. Analysis of radar micro-Doppler with time-frequency transform[C]. The Tenth IEEE Workshop on Statistical Signal and Array Processing,Pocono Manor,2000. DOI: 10.1109/SSAP.2000.870167.

    [31]

    ZHANG Zhu,ZHANG Xiao,LYU Hao,et al. Human-target detection and surrounding structure estimation under a simulated rubble via UWB radar[J]. IEEE Geoscience and Remote Sensing Letters,2013,10(2):328-331. DOI: 10.1109/LGRS.2012.2205555

    [32]

    LI Zhao,LI Wenzhe,LYU Hao,et al. A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar[J]. IEEE Transactions on Microwave Theory and Techniques,2013,61(5):2086-2092. DOI: 10.1109/TMTT.2013.2247054

    [33]

    DORP P V,GROEN F C A. Human walking estimation with radar[J]. IEE Proceedings-Radar,Sonar and Navigation,2003,150(5):356-365.

    [34]

    DORP P V,GROEN F C A. Feature-based human motion parameter estimation with radar[J]. IET Radar Sonar & Navigation,2008,2(2):135-145.

    [35]

    WANG Yazhou,LIU Quanhua,FATHY A E. CW and pulse-Doppler radar processing based on FPGA for human sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,51(5):3097-3107.

    [36]

    REN Lingyun,TRAN N,FOROUGHIAN F,et al. Short-time state-space method for micro-Doppler identification of walking subject using UWB impulse Doppler radar[J]. IEEE Transactions on Microwave Theory and Techniques,2018,66(7):3521-3534. DOI: 10.1109/TMTT.2018.2829523

    [37]

    TANG M C,KUO Chaoyun,WUN D,et al. A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation[J]. IEEE Transactions on Microwave Theory and Techniques,2016,64(12):4812-4822. DOI: 10.1109/TMTT.2016.2623612

    [38]

    WANG Fukang,HORNG T S. Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation[J]. IEEE Transactions on Microwave Theory and Techniques,2017,65(12):5324-5333. DOI: 10.1109/TMTT.2017.2768363

    [39] 夏林林,王健琪,路国华,等. 采用重现量化分析方法识别生物雷达回波信号中人体数量的研究[J]. 航天医学与医学工程,2008(2):126-129.

    XIA Linlin,WANG Jianqi,LU Guohua,et al. Study on the method of recurrence quantification analysis(RQA) to recognize the amount of human bodies in bioradar echo signals[J]. Space Medicine & Medical Engineering,2008(2):126-129.

    [40] 张杨,李岩峰,焦腾,等. 超宽谱雷达人体目标识别的新方法[J]. 信息化研究,2010,36(8):22-24.

    ZHANG Yang,LI Yanfeng,JIAO Teng,et al. A new method of human target recognition based on UWB radar[J]. Informatization Research,2010,36(8):22-24.

    [41] 罗丁利,王勇,杨磊,等. 基于微多普勒特征的单人与小分队分类技术[J]. 电讯技术,2016,56(9):969-975.

    LUO Dingli,WANG Yong,YANG Lei,et al. Technology for classifying an individual soldier and a small group based on micro-doppler features[J]. Telecommunication Engineering,2016,56(9):969-975.

    [42] 张自启,吕昊,陈扶明,等. UWB生物雷达多静止人体目标呼吸检测中“遮蔽效应”的实验研究[J]. 医疗卫生装备,2017,38(4):1-5.

    ZHANG Ziqi,LYU Hao,CHEN Fuming,et al. Experimental study on shadowing effect of multi static human targets respiration detection with UWB bio-radar[J]. Chinese Medical Equipment Journal,2017,38(4):1-5.

    [43] 张杨,吕昊,于霄,等. 基于超宽谱雷达多目标穿墙探测定位技术的研究[J]. 医疗卫生装备,2016,37(8):10-13.

    ZHANG Yang,LYU Hao,YU Xiao,et al. Research of through-wall detection and location technique for multihuman targets using ultra wideband radar[J]. Chinese Medical Equipment Journal,2016,37(8):10-13.

    [44] 陈光,费翔宇,冯温雅,等. 超宽带废墟搜救雷达的多生命体目标识别[J]. 现代电子技术,2015,38(19):76-78.

    CHEN Guang,FEI Xiangyu,FENG Wenya,et al. Multi-life group recognition based on UWB ruin-rescue radar[J]. Modern Electronics Technique,2015,38(19):76-78.

    [45]

    RIVERA N V,VENKATESH S,ANDERSON C,et al. Multi- target estimation of heart and respiration rates using ultra wideband sensors[C]. The 14th European Signal Processing Conference,Florence,2006. DOI: 10.5281/ZENODO.40184.

    [46] 薛慧君,刘淼,祁富贵,等. 遮蔽情况下多人体目标的探测和识别研究[J]. 中国医疗设备,2018,33(10):32-35.

    XUE Huijun,LIU Miao,QI Fugui,et al. Detection and identification for multiple human targets under shadowing condition[J]. China Medical Devices,2018,33(10):32-35.

    [47]

    REN Lingyun,SEO K Y,WANG Haofei,et al. Noncontact multiple heartbeats detection and subject localization using UWB impulse doppler radar[J]. IEEE Microwave and Wireless Components Letters,2015,25(10):690-692. DOI: 10.1109/LMWC.2015.2463214

    [48] 胡志鹏. 超宽带MIMO雷达系统设计与穿墙成像方法研究[D]. 长春:吉林大学,2020.

    HU Zhipeng. Design of UWB MIMO radar system and research on the method of through-wall imaging[D]. Changchun:Jilin University,2020.

图(5)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  91
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-07-14
  • 网络出版日期:  2024-07-29
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回