基于UWB与PDR的井下人员融合定位方法

贾宇涛, 李冠华, 潘红光, 陈海舰, 魏绪强, 白俊明

贾宇涛,李冠华,潘红光,等. 基于UWB与PDR的井下人员融合定位方法[J]. 工矿自动化,2024,50(6):96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071
引用本文: 贾宇涛,李冠华,潘红光,等. 基于UWB与PDR的井下人员融合定位方法[J]. 工矿自动化,2024,50(6):96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071
JIA Yutao, LI Guanhua, PAN Hongguang, et al. A fusion positioning method for underground personnel based on UWB and PDR[J]. Journal of Mine Automation,2024,50(6):96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071
Citation: JIA Yutao, LI Guanhua, PAN Hongguang, et al. A fusion positioning method for underground personnel based on UWB and PDR[J]. Journal of Mine Automation,2024,50(6):96-102, 135. DOI: 10.13272/j.issn.1671-251x.2024010071

基于UWB与PDR的井下人员融合定位方法

基金项目: 国家重点研发计划项目(2023YFC3009800);国家自然科学基金项目(61603295);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-38);西安市科技计划项目(23ZDCYJSGG0025-2022)。
详细信息
    作者简介:

    贾宇涛(1988—),男,陕西榆林人,工程师,研究方向为煤矿井下人员定位,E-mail:3159567747@qq.com

    通讯作者:

    潘红光(1983—),男,山东临沂人,副教授,研究方向为人工智能、过程控制,E-mail:hongguangpan@163.com

  • 中图分类号: TD655.3

A fusion positioning method for underground personnel based on UWB and PDR

  • 摘要: 现有超宽带(UWB)与行人航位推算(PDR)融合定位方法大多忽略了非视距(NLOS)环境下的定位误差校正,以简单的阈值划分作为NLOS环境判断依据,而阈值划分在很大程度上与定位场景及场地大小相关。针对上述问题,提出一种考虑NLOS环境的基于UWB与PDR的井下人员融合定位方法。首先,利用UWB技术进行井下人员位置解算,通过三边定位算法得到人员初步位置后,使用最小二乘法对位置进行优化,通过多项式拟合实现NLOS环境下基站和标签之间实际值和测量值之间的拟合,减小NLOS环境下的测距误差,提高定位精度。其次,采用PDR算法对步态进行识别和分析,PDR算法使用惯性导航传感器采集的步态数据,通过步态识别、步长估计和方向估计,实现目标位置的更新;然后,通过卷积神经网络(CNN)−长短期记忆(LSTM)网络分析信道脉冲响应(CIR)特征,实现视距(LOS)/NLOS识别,解决NLOS环境判断存在场景限制的问题;最后,根据LOS/NLOS识别结果确定融合系数,实现UWB和PDR定位结果融合。测试结果表明:多项式拟合后UWB平均测距误差降低0.59 m;LOS/NLOS识别的平均准确率为95.3%,召回率和F1分数均在90%以上,验证了CNN−LSTM具有较好的识别效果;融合定位方法的平均误差为0.31 m,较UWB降低1.57 m,较PDR降低1.41 m。
    Abstract: Most existing fusion positioning methods for ultra-wideband (UWB) and pedestrian dead reckoning (PDR) ignore the correction of positioning errors in non line of sight (NLOS) environments. The methods use simple threshold division as the basis for NLOS environment judgment, which is largely related to the positioning scene and site size. In order to solve the above problems, a fusion positioning method for underground personnel considering NLOS environment is proposed. Firstly, UWB technology is used to calculate the position of underground personnel. After obtaining the preliminary position of personnel through the trilateral positioning algorithm, the least squares method is used to optimize the position. Polynomial fitting is used to achieve the fitting between the actual value and the measured value between the base station and the tag in the NLOS environment, reducing the ranging error in the NLOS environment and improving the positioning precision. Secondly, the PDR algorithm is used for gait recognition and analysis. The PDR algorithm uses gait data collected by inertial navigation sensors to update the target position through gait recognition, step size estimation, and direction estimation. Thirdly, the convolutional neural network (CNN) - long short term memory (LSTM) network is used to analyze the features of channel impulse response (CIR) and achieve line of sight (LOS)/NLOS recognition. It solves the problem of scene limitations in NLOS environment judgment. Finally, the fusion coefficient is determined based on the LOS/NLOS recognition results to achieve the fusion of UWB and PDR positioning results. The experimental results show that after polynomial fitting, the average ranging error of UWB is reduced by 0.59 m. The average accuracy of LOS/NLOS recognition is 95.3%, and the recall rate and F1 score are both above 90%, verifying that CNN-LSTM has good recognition performance. The average error of the fusion positioning method is 0.31 m, which is 1.57 m lower than UWB and 1.41 m lower than PDR.
  • 图  1   基于UWB与PDR的井下人员融合定位方法原理

    Figure  1.   Principle of underground personnel fusion positioning method based on UWB and PDR

    图  2   基站布局

    Figure  2.   Base station layout

    图  3   最小二乘法原理

    Figure  3.   Principle of least squares method

    图  4   定位圆存在形式

    Figure  4.   Existence form of positioning circle

    图  5   PDR与UWB融合定位流程

    Figure  5.   The fusion positioning process of pdestrian dead reckoning(PDR) and UWB

    图  6   测试现场

    Figure  6.   Test site

    图  7   训练损失

    Figure  7.   Training loss

    图  8   3种定位方法测试结果

    Figure  8.   Test results of three positioning methods

    图  9   3种定位方法误差对比

    Figure  9.   Comparison of errors of three positioning methods

    表  1   环境识别结果

    Table  1   Environmental recognition result %

    环境 准确率 召回率 F1分数
    环境1 95.0 92.1 91.9
    环境2 95.2 91.3 93.0
    环境3 95.8 91.6 91.7
    环境4 95.1 92.6 91.5
    平均值 95.3 91.9 92.0
    下载: 导出CSV

    表  2   多项式拟合前后误差对比

    Table  2   Comparison of errors before and after polynomial fitting

    测试序号 UWB测距误差/m
    拟合前 拟合后
    1 1.29 0.86
    2 1.23 0.88
    3 1.32 0.91
    4 1.49 0.97
    5 1.38 0.65
    6 1.44 0.71
    7 1.19 0.59
    8 1.63 0.84
    9 1.51 0.78
    10 1.20 0.63
    平均值 1.37 0.78
    下载: 导出CSV

    表  3   3种定位方法误差统计结果

    Table  3   Statistical results of errors of three positioning methods m

    定位方法 最大误差 最小误差 平均误差
    UWB 3.71 0.21 1.88
    PDR 3.75 0.05 1.72
    UWB+PDR 1.19 0.06 0.31
    下载: 导出CSV

    表  4   融合方法误差对比

    Table  4   Comparison of errors of fusion methods

    融合方法 平均定位误差/m
    抗差卡尔曼滤波 1.420
    扩展卡尔曼滤波 0.475
    自适应扩展卡尔曼滤波 0.330
    视距分析融合 0.310
    下载: 导出CSV
  • [1] 王显政. “以煤为基,多元发展”是我国能源安全战略的必然选择[J]. 煤炭经济研究,2014,34(4):1.

    WANG Xianzheng. "Coal-based,diversified development" is the inevitable choice of China's energy security strategy[J]. Coal Economy Research,2014,34(4):1.

    [2]

    LI Menggang,ZHU Hua,YOU Shaoze,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652-6669. DOI: 10.1109/JSEN.2020.2976097

    [3]

    ZHAO Yuxuan,WANG Manyi. The LOS/NLOS classification method based on deep learning for the UWB localization system in coal mines[J]. Applied Sciences,2022,12(13). DOI: 10.3390/app12136484.

    [4] 陈炜翰,李世银. 基于超宽带和微惯导组合的室内精确定位[J]. 电子元器件与信息技术,2020,4(1):24-26.

    CHEN Weihan,LI Shiyin. Indoor precise positioning based on ultra-wideband and micro-inertial navigation combination[J]. Electronic Component and Information Technology,2020,4(1):24-26.

    [5] 汪义庭. 基于UWB的无线室内定位系统设计与实现[D]. 淮南:安徽理工大学,2019.

    WANG Yiting. Design and implementation of wireless indoor positioning system based on UWB[D]. Huainan:Anhui University of Science & Technology,2019.

    [6]

    BRIGADNOV I,LUTONIN A,BOGDANOVA K. Error state extended Kalman filter localization for underground mining environments[J]. Symmetry,2023,15(2). DOI: 10.3390/sym15020344.

    [7]

    YU Da,LI Changgeng,XIAO Jiaxun. Neural networks-based Wi-Fi/PDR indoor navigation fusion methods[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-14.

    [8] 李金奎. 基于超声波时差法定位系统设计[J]. 自动化应用,2022(10):11-14.

    LI Jinkui. Design of positioning system based on ultrasonic time difference method[J]. Automation Application,2022(10):11-14.

    [9] 陶靖. 煤矿测量红外定位放线装置的研制[J]. 煤矿机电,2020,41(3):111-112,115.

    TAO Jing. Development of infrared positioning and actuating device for coal mine measurement[J]. Colliery Mechanical & Electrical Technology,2020,41(3):111-112,115.

    [10] 王轩. 基于模式感知和地图匹配的PDR/BLE室内融合定位方法研究[D]. 徐州:中国矿业大学,2021.

    WANG Xuan. Research on PDR/BLE indoor fusion positioning based on mode awareness and map matching[D]. Xuzhou:China University of Mining and Technology,2021.

    [11]

    KONG Xiaotong,WU Chang,YOU Yuan,et al. Hybrid indoor positioning method of BLE and PDR based on adaptive feedback EKF with low BLE deployment density[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-12.

    [12] 李宗伟,王翀,王刚,等. 煤矿井下人员融合定位方法[J]. 工矿自动化,2020,46(1):59-64.

    LI Zongwei,WANG Chong,WANG Gang,et al. Fusion positioning method of underground mine personnel[J]. Industry and Mine Automation,2020,46(1):59-64.

    [13] 吴静然,崔冉,赵志凯,等. 矿井人员融合定位系统[J]. 工矿自动化,2018,44(4):74-79.

    WU Jingran,CUI Ran,ZHAO Zhikai,et al. Mine personnel fusion location system[J]. Industry and Mine Automation,2018,44(4):74-79.

    [14] 赵子凡,张艺蒙,彭霄,等. 基于UWB/INS组合的室内高精度移动定位算法研究[J]. 导航定位学报,2022,10(5):74-80. DOI: 10.3969/j.issn.2095-4999.2022.05.011

    ZHAO Zifan,ZHANG Yimeng,PENG Xiao,et al. Indoor high-precision mobile positioning algorithm design based on the Integration of UWB/INS[J]. Journal of Navigation and Positioning,2022,10(5):74-80. DOI: 10.3969/j.issn.2095-4999.2022.05.011

    [15]

    YUAN Debao,ZHANG Jian,WANG Jian,et al. Robustly adaptive EKF PDR/UWB integrated navigation based on additional heading constraint[J]. Sensors,2021,21(13). DOI: 10.3390/s21134390.

    [16]

    ANGRISANO A,VULTAGGIO M,GAGLIONE S,et al. Pedestrian localization with PDR supplemented by GNSS[C]. European Navigation Conference,Warsaw,2019:1-6.

    [17] 刘送永,崔玉明. 煤矿井下定位导航技术研究进展[J]. 矿业研究与开发,2019,39(7):114-120.

    LIU Songyong,CUI Yuming. Research progress of positioning and navigation technology in underground coal mine[J]. Mining Research and Development,2019,39(7):114-120.

    [18] 吴益凡,刘帅,刘婷月. 基于UWB的室内运动定位算法研究[J]. 电脑编程技巧与维护,2024(4):151-153. DOI: 10.3969/j.issn.1006-4052.2024.04.046

    WU Yifan,LIU Shuai,LIU Tingyue. Research on indoor motion location algorithm based on UWB[J]. Computer Programming Skills & Maintenance,2024(4):151-153. DOI: 10.3969/j.issn.1006-4052.2024.04.046

    [19] 黎昱杰,黎蕾蕾,卜继军,等. 基于UWB/PDR的无基础设施行人协同导航研究[J]. 压电与声光,2023,45(5):736-739.

    LI Yujie,LI Leilei,BU Jijun,et al. Research on non-infrastructure pedestrian cooperative navigation based on UWB/PDR combination[J]. Piezoelectrics & Acoustooptics,2023,45(5):736-739.

    [20] 李景文,韦晶闪,周俊芬,等. 融合UWB+PDR的室内定位方法改进[J]. 测绘通报,2022(3):36-40. DOI: 10.3969/j.issn.0494-0911.2022.3.chtb202203008

    LI Jingwen,WEI Jingshan,ZHOU Junfen,et al. Improvement of indoor positioning method combining UWB and PDR[J]. Bulletin of Surveying and Mapping,2022(3):36-40. DOI: 10.3969/j.issn.0494-0911.2022.3.chtb202203008

    [21] 杨国华. 基于无线传感网络与UWB技术的煤矿井下采掘人员定位方法[J]. 煤矿现代化,2024,33(2):41-44,50. DOI: 10.3969/j.issn.1009-0797.2024.02.010

    YANG Guohua. A method for locating mining personnel in coal mines based on wireless sensor networks and UWB technology[J]. Coal Mine Modernization,2024,33(2):41-44,50. DOI: 10.3969/j.issn.1009-0797.2024.02.010

    [22] 方贤宝,林勇,苏羿安,等. 基于TOF和自适应抗差卡尔曼滤波的UWB室内定位算法[J]. 传感器与微系统,2024,43(3):134-138.

    FANG Xianbao,LIN Yong,SU Yi'an,et al. UWB indoor positioning algorithm based on TOF and adaptive robust KF[J]. Transducer and Microsystem Technologies,2024,43(3):134-138.

    [23]

    SI Lei,WANG Zhongbin,WEI Dong,et al. Fusion positioning of mobile equipment in underground coal mine based on redundant IMUs and UWB[J]. IEEE Transactions on Industrial Informatics,2024,20(4):5946-5958. DOI: 10.1109/TII.2023.3342427

    [24] 李金昆,修春娣,杨东凯. 基于UWB/PDR/地磁的地下空间多源融合定位方法[C]. 第十六届全国信号和智能信息处理与应用学术会议,2022:182-187.

    LI Jinkun,XIU Chundi,YANG Dongkai. Multi-Source fusion location method for underground space based on UWB/ PDR/Geomagnetic[C]. The 14th National Academic Conference on Signal and Intelligent Information Processing and Application,2022:182-187.

    [25] 刘宇,谢宇,彭慧,等. 基于UWB/PDR的航向发散自适应修正算法研究[J]. 电子测量技术,2022,45(3):98-103.

    LIU Yu,XIE Yu,PENG Hui,et al. Research on adaptive correction algorithm of heading divergence based on UWB/PDR[J]. Electronic Measurement Technology,2022,45(3):98-103.

  • 期刊类型引用(24)

    1. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 . 百度学术
    2. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 . 百度学术
    3. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    4. 贾良杰,胡子波,赵娟. 基于永磁变频技术的刮板输送机调速系统节能分析. 煤矿机械. 2023(03): 139-141 . 百度学术
    5. 胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究. 煤炭科学技术. 2023(02): 377-389 . 百度学术
    6. 郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统. 工矿自动化. 2023(04): 120-127 . 本站查看
    7. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 . 百度学术
    8. 陈湘源,薛旭升. 基于线性模型划分的煤流体积测量. 工矿自动化. 2023(07): 35-40+106 . 本站查看
    9. 朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 . 本站查看
    10. 刘飞,张乐群,潘红光,李利. 带式输送机煤量检测技术及其发展趋势. 中国煤炭. 2023(09): 77-83 . 百度学术
    11. 郭永涛,裴文良,马永飞,张旭华,谢海峰,寇丽梅. 矿用隔爆型煤量扫描装置的设计与应用. 集成电路应用. 2023(10): 322-323 . 百度学术
    12. 汪连成. 刮板输送机智能化技术及应用. 煤矿机械. 2022(01): 138-140 . 百度学术
    13. 刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 . 百度学术
    14. 王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 . 百度学术
    15. 孙鹏亮,吴少伟. 基于红外扫描装置的转载机煤量监测技术研究. 数字通信世界. 2022(08): 63-65 . 百度学术
    16. 郑忠友,朱磊,程海星,张光磊. 综放工作面采放协调关系及智能装备研究. 煤矿机械. 2021(01): 54-56 . 百度学术
    17. 卢进南,韩建国,王常宝,郭友瑞,王志良. 热电厂运煤车厢动态监测及体积测量方法. 煤矿机电. 2021(01): 49-53+56 . 百度学术
    18. 孙延飞. 悬臂掘进机截割方量测量系统设计. 煤矿机械. 2021(09): 24-26 . 百度学术
    19. 崔亚平,朱时雪. 基于激光线扫描的桥梁检测仪器误差自动化矫正方法研究. 自动化与仪器仪表. 2020(01): 32-35 . 百度学术
    20. 韩涛,黄友锐,张立志,徐善永,许家昌,鲍士水. 基于图像识别的带式输送机输煤量和跑偏检测方法. 工矿自动化. 2020(04): 17-22 . 本站查看
    21. 王杰. 矿用隔爆型煤量扫描装置设计与应用. 煤. 2020(06): 49-50 . 百度学术
    22. 赵倩,陈杨军. 激光技术的轨道表面瑕疵识别系统设计. 激光杂志. 2020(08): 110-114 . 百度学术
    23. 王文清,田柏林,冯海明,陈兴明,李萍,任安祥. 基于激光测距矿用带式输送机多参数检测方法研究. 煤炭科学技术. 2020(08): 131-138 . 百度学术
    24. 武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 . 百度学术

    其他类型引用(9)

图(9)  /  表(4)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  47
  • PDF下载量:  25
  • 被引次数: 33
出版历程
  • 收稿日期:  2024-01-21
  • 修回日期:  2024-06-17
  • 网络出版日期:  2024-07-09
  • 刊出日期:  2024-06-29

目录

    /

    返回文章
    返回