基于红外热像和振动信号的煤岩识别实验研究

刘治翔, 孙战, 尹家阔, 邹康

刘治翔,孙战,尹家阔,等. 基于红外热像和振动信号的煤岩识别实验研究[J]. 工矿自动化,2024,50(4):78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029
引用本文: 刘治翔,孙战,尹家阔,等. 基于红外热像和振动信号的煤岩识别实验研究[J]. 工矿自动化,2024,50(4):78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029
LIU Zhixiang, SUN Zhan, YIN Jiakuo, et al. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation,2024,50(4):78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029
Citation: LIU Zhixiang, SUN Zhan, YIN Jiakuo, et al. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation,2024,50(4):78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029

基于红外热像和振动信号的煤岩识别实验研究

基金项目: 辽宁省应用基础研究计划项目(2023JH2/101600061)。
详细信息
    作者简介:

    刘治翔(1988—),男,辽宁大连人,副教授,博士,研究方向为煤矿智能掘进成套装备及技术,E-mail:lzxcndl@yeah.net

  • 中图分类号: TD67

Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals

  • 摘要: 针对现有煤岩识别技术存在的难以实际应用、易受信号干扰、成本高和实现复杂等问题,通过理论分析煤岩截割产热与煤岩硬度的关系,证明通过红外热像获取的截割温度变化来进行煤岩识别的合理性;搭建了掘进机截齿截割煤岩试验台,对不同硬度的普通煤层、煤岩交界处及中砂岩层进行长时间截割试验,通过红外热像仪和振动传感器分别获取截割温度和截割头振动信号并分析其变化规律。研究结果表明:① 随着截割时间增加,截割温度逐渐升高;煤岩硬度越高,截割温度越高,且截割温度上升速率越快;在截割起始阶段无法通过截割温度识别煤岩,但在稳定截割时可根据截割温度特性识别煤岩。② 截割头振动强度随着煤岩硬度增大而变大,但不随截割时间增加而产生明显变化,因此可弥补在截割起始阶段无法通过截割温度识别煤岩的不足。③ 通过单一截割温度或振动强度不能对煤岩进行准确识别,因此可在截割起始阶段和频繁出现闪温时通过振动强度来识别煤岩,而在截割稳定阶段通过红外热像获取的温度来识别煤岩。
    Abstract: In response to the difficulties in practical application, susceptibility to signal interference, high cost, and complex implementation of existing coal rock recognition technologies, this paper theoretically analyzes the relationship between coal rock cutting heat production and coal rock hardness. The paper proves the rationality of using infrared thermal imaging to obtain cutting temperature changes for coal rock recognition. A coal rock cutting test bench is built for roadheader. Long-term cutting tests are conducted on ordinary coal seams, coal rock interfaces, and sandstone layers with different hardness. The cutting temperature and vibration signals of the cutting head are obtained through infrared thermal imaging and vibration sensors, and their change patterns are analyzed. The research results indicate the following points. ① As the cutting time increases, the cutting temperature gradually increases. The higher the hardness of coal rock, the higher the cutting temperature, and the faster the rate of increase in cutting temperature. At the initial stage of cutting, coal and rock cannot be recognized by cutting temperature, but during stable cutting, coal and rock can be recognized based on cutting temperature features. ② The vibration intensity of the cutting head increases with the increase of coal rock hardness, but does not show a significant change with the increase of cutting time. Therefore, it can compensate for the lack of recognition of coal rock through cutting temperature at the beginning stage of cutting.③ Accurate recognition of coal and rock cannot be achieved through a single cutting temperature or vibration intensity. Therefore, coal and rock can be recognized through vibration intensity during the initial cutting stage and frequent flash temperatures. In the stable cutting stage, coal and rock can be recognized through temperature obtained from infrared thermal imaging.
  • 图  1   掘进机截齿截割煤岩试验台

    1—岩样;2—截割头;3—振动传感器;4—截割臂;5—升降电缸;6—摆动底座;7—摆动电缸;8—伸缩电缸;9—截割底座;10—红外热像仪;11—动力控制系统;12—电动机控制器;13—信号分析计算机;14—信号采集仪;15—试验台底座。

    Figure  1.   Roadheader cutting gear cutting coal rock test bench

    图  2   标准试件

    Figure  2.   Standard test specimen

    图  3   截割头摆动截割过程红外热像

    Figure  3.   Infrared thermal image of cutting head swing cutting process

    图  4   不同硬度岩样截割温度变化曲线

    Figure  4.   Temperature variation curves of rock samples with different hardness

    图  5   不同硬度岩样截割时振动强度变化曲线

    Figure  5.   Vibration intensity variation curves of rock samples with different hardness

    图  6   不同硬度岩样截割温度、振动强度变化趋势对比

    Figure  6.   Comparison of variation trend of temperature and vibration intensity of rock samples with different hardness

    表  1   岩样配置比例

    Table  1   Allocation proportion of rock sample

    岩样质量占比/%岩样尺寸(长×宽×高)/(mm×mm×mm)
    沙子水泥石膏
    煤层82117600×400×200
    中砂岩层70237600×400×200
    下载: 导出CSV

    表  2   不同硬度岩样截割平均温度

    Table  2   Average cutting temperature of rock samples with different hardness

    截割时间/min 平均温度/℃
    普通煤层 煤岩交界处 中砂岩层
    0~5 24.92 23.35 27.95
    5~10 24.85 24.25 28.46
    10~15 25.16 25.11 27.61
    15~20 25.68 24.85 24.06
    20~25 27.61 27.73 28.00
    25~30 27.32 31.43 33.42
    下载: 导出CSV

    表  3   不同硬度岩样截割温度变化

    Table  3   Temperature variation of rock samples with different hardness

    煤层平均温度最高温度温度变化幅值
    普通煤层25.9138.202.40
    煤岩交界处26.0837.208.08
    中砂岩层28.2241.009.36
    下载: 导出CSV

    表  4   不同硬度岩样截割时振动方差对比

    Table  4   Comparison of vibration variance during cutting of rock samples with different hardness

    截割时间/min 振动方差 /(cm2·s−4
    普通煤层 煤岩交界处 中砂岩层
    0~5 99.60 119.45 147.97
    5~10 99.34 119.25 147.68
    10~15 99.15 119.37 147.37
    15~20 98.78 119.87 147.92
    20~25 98.15 119.94 146.89
    25~30 99.64 119.26 147.05
    下载: 导出CSV
  • [1] 王虹,陈明军,张小峰. 我国煤矿快速掘进20 a发展与展望[J]. 煤炭学报,2024,49(2):1199-1213.

    WANG Hong,CHEN Mingjun,ZHANG Xiaofeng. Twenty years development and prospect of rapid coal mine roadway excavation in China[J]. Journal of China Coal Society,2024,49(2):1199-1213.

    [2] 才庆祥,陈彦龙. 中国露天煤矿70年成就回顾及高质量发展架构体系[J]. 煤炭学报,2024,49(1):235-260.

    CAI Qingxiang,CHEN Yanlong. Review of 70 years' achievements and high-quality development architecture system of surface coal mining in China[J]. Journal of China Coal Society,2024,49(1):235-260.

    [3] 杨健健,张强,王超,等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报,2020,45(8):2995-3005.

    YANG Jianjian,ZHANG Qiang,WANG Chao,et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society,2020,45(8):2995-3005.

    [4] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.

    [5] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.

    [6] 石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1-34.

    SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1-34.

    [7] 李晓豁,闫建伟,张惠波,等. 割岩截齿的应力分布及其载荷的仿真研究[J]. 计算机仿真,2011,28(11):405-408.

    LI Xiaohuo,YAN Jianwei,ZHANG Huibo,et al. Simulation and research on stress distribution and loads on pick cutting rock[J]. Computer Simulation,2011,28(11):405-408.

    [8] 张婷. 基于变换域与高斯混合模型聚类的煤岩识别方法[J]. 煤炭技术,2018,37(11):320-323.

    ZHANG Ting. Coal and rock recognition method based on transform domain and clustering of Gaussian mixture model[J]. Coal Technology,2018,37(11):320-323.

    [9] 田立勇,毛君,王启铭. 基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J]. 煤炭学报,2016,41(3):782-787.

    TIAN Liyong,MAO Jun,WANG Qiming. Coal and rock identification method based on the force of idler shaft in shearer's ranging arm[J]. Journal of China Coal Society,2016,41(3):782-787.

    [10] 刘万里,马修泽,张学亮. 基于探地雷达的特厚煤层厚度动态探测技术[J]. 煤炭学报,2021,46(8):2706-2714.

    LIU Wanli,MA Xiuze,ZHANG Xueliang. Dynamic detection technology of extra-thick coal seam thickness based on ground penetrating radar[J]. Journal of China Coal Society,2021,46(8):2706-2714.

    [11] 李力,欧阳春平. 基于超声相控阵的煤岩界面识别研究[J]. 中国矿业大学学报,2017,46(3):485-492.

    LI Li,OUYANG Chunping. Research on coal-rock interface recognition based on ultrasonic phased array[J]. Journal of China University of Mining & Technology,2017,46(3):485-492.

    [12] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008.

    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.

    [13] 吴德忠,刘泉声,黄兴,等. 基于边界跟踪和神经网络的煤岩界面识别方法研究[J]. 煤炭工程,2021,53(6):140-146.

    WU Dezhong,LIU Quansheng,HUANG Xing,et al. Coal-rock interface recognition method based on boundary tracking algorithm and artificial neural network[J]. Coal Engineering,2021,53(6):140-146.

    [14]

    SI Lei,XIONG Xiangxiang,WANG Zhongbin,et al. A deep convolutional neural network model for intelligent discrimination between coal and rocks in coal mining face[J]. Mathematical Problems in Engineering,2020(2):1-12.

    [15] 孙传猛,王燕平,王冲,等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法[J]. 采矿与岩层控制工程学报,2022,4(1):81-90.

    SUN Chuanmeng,WANG Yanping,WANG Chong,et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation[J]. Journal of Mining and Strata Control Engineering,2022,4(1):81-90.

    [16] 张强,刘志恒,王海舰,等. 基于截齿振动及温度特性的煤岩识别研究[J]. 煤炭科学技术,2018,46(3):1-9,18.

    ZHANG Qiang,LIU Zhiheng,WANG Haijian,et al. Study on coal and rock identification based on vibration and temperature features of picks[J]. Coal Science and Technology,2018,46(3):1-9,18.

    [17] 王增才,富强. 自然γ射线穿透煤层及支架顶梁衰减规律[J]. 辽宁工程技术大学学报(自然科学版),2006,25(6):804-807.

    WANG Zengcai,FU Qiang. Attenuation of natural γ ray passing through coal seam and hydraulic support[J]. Journal of Liaoning Technical University(Natural Science),2006,25(6):804-807.

    [18]

    LIU Guanhua,LIU Zhentang,FENG Junjun,et al. Experimental research on the ultrasonic attenuation mechanism of coal[J]. Journal of Geophysics and Engineering,2017,14(3):502-512. DOI: 10.1088/1742-2140/aa5f23

    [19]

    LIU Yanbing,DHAKAL S,HAO Binyao. Coal and rock interface identification based on wavelet packet decomposition and fuzzy neural network[J]. Journal of Intelligent & Fuzzy Systems:Applications in Engineering and Technology,2020,38(4):3949-3959.

    [20] 张德义,刘送永,贾新庆,等. 基于红外热像的夹矸巷道断面记忆截割试验研究[J]. 煤炭学报,2021,46(10):3377-3385.

    ZHANG Deyi,LIU Songyong,JIA Xinqing,et al. Experimental study on memory cutting of roadway cross-section containing gangue based on infrared thermography[J]. Journal of China Coal Society,2021,46(10):3377-3385.

    [21] 路红蕊,童敏明,刘栋. 基于钻头振动特性的采煤机煤岩识别研究[J]. 煤炭技术,2018,37(3):242-245.

    LU Hongrui,TONG Minming,LIU Dong. Research on coal-rock recognition based on vibration characteristics of coal shearer drill[J]. Coal Technology,2018,37(3):242-245.

  • 期刊类型引用(1)

    1. 王忠宾,李福涛,司垒,魏东,戴嘉良,张森. 采煤机自适应截割技术研究进展及发展趋势. 煤炭科学技术. 2025(01): 296-311 . 百度学术

    其他类型引用(0)

图(6)  /  表(4)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  33
  • PDF下载量:  23
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-04-26
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回