基于自适应多尺度注意力机制的CNN−GRU矿用电动机健康状态评估

谭东贵, 袁逸萍, 樊盼盼

谭东贵,袁逸萍,樊盼盼. 基于自适应多尺度注意力机制的CNN−GRU矿用电动机健康状态评估[J]. 工矿自动化,2024,50(2):138-146. DOI: 10.13272/j.issn.1671-251x.2023110024
引用本文: 谭东贵,袁逸萍,樊盼盼. 基于自适应多尺度注意力机制的CNN−GRU矿用电动机健康状态评估[J]. 工矿自动化,2024,50(2):138-146. DOI: 10.13272/j.issn.1671-251x.2023110024
TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation,2024,50(2):138-146. DOI: 10.13272/j.issn.1671-251x.2023110024
Citation: TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation,2024,50(2):138-146. DOI: 10.13272/j.issn.1671-251x.2023110024

基于自适应多尺度注意力机制的CNN−GRU矿用电动机健康状态评估

基金项目: 国家自然科学基金资助项目(72361032);新疆维吾尔自治区重点研发资助项目(2021B01003)。
详细信息
    作者简介:

    谭东贵(1997—),男,贵州毕节人,硕士研究生,主要研究方向为机械设备健康状态评估与预测性维护,E-mail:tan_0514@163.com

    通讯作者:

    袁逸萍(1973—),女,新疆石河子人,教授,博士研究生导师,主要研究方向为智能工厂/数字化车间、精益生产、预测性维护,E-mail:yipingyuan@163.com

  • 中图分类号: TD614

Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism

  • 摘要: 利用多传感器信息融合技术进行电动机健康状态评估时,矿用电动机监测数据中存在异常值和缺失值,而卷积神经网络和循环神经网络等深度学习模型在数据质量下降严重的情况下难以有效提取数据特征和更新网络权重,导致梯度消失或爆炸等问题。针对上述问题,提出了一种基于自适应多尺度注意力机制的CNN−GRU(CNN−GRU−AMSA)模型,用于评估矿用电动机健康状态。首先,对传感器采集的电动机运行数据进行填补、剔除和标准化处理,并以环境温度变化作为依据对矿用电动机运行数据进行工况划分。然后,根据马氏距离计算出电动机电流、电动机三相绕组温度、电动机前端轴承温度和电动机后端轴承温度等健康评估指标的健康指数(HI),采用Savitzky–Golay滤波器对指标HI进行降噪、平滑、归一化处理,并结合主成分分析法计算的不同指标对矿用电动机的贡献度,对指标HI进行加权融合得到矿用电动机HI。最后,将矿用电动机HI输入CNN−GRU−AMSA模型中,该模型通过动态调整注意力权重,实现对不同尺度特征的信息融合,从而准确输出电动机健康状态评估结果。实验结果表明,与其他常见的深度学习模型CNN,CNN−GRU,CNN−LSTM,CNN−LSTM−Attention相比,CNN−GRU−AMSA模型在均方根误差、平均绝对误差、准确率、Macro F1及Micro F1等评价指标上更优,且预测残差的波动范围更小,稳定性更优。
    Abstract: When using multi-sensor information fusion technology to evaluate the health status of motors, there are outliers and missing values in the monitoring data of mine motors. However, deep learning models such as convolutional neural networks and recurrent neural networks find it difficult to effectively extract data features and update network weights when the data quality is severely degraded, resulting in problems such as vanishing or exploding gradients. In order to solve the above problems, A CNN-GRU (CNN-GRU-AMSA) model based on adaptive multi-scale attention mechanism is proposed to evaluate the health status of mine motors. Firstly, the model fills in, removes, and standardizes the motor operation data collected by sensors, and classifies the operating conditions of mine motors based on environmental temperature changes. Secondly, based on the Mahalanobis distance, the health index (HI) of health evaluation indicators such as motor current, three-phase temperature of motor winding, front bearing temperature of motor, and rear bearing temperature of motor are calculated. The Savitzky Golay filter is used to denoise, smooth, and normalize the HI indicator. Combining the contribution of different indicators calculated by principal component analysis method to mine motors, the weighted fusion of indicator HI is used to obtain the mine motor HI. Finally, the mine motor HI is input into the CNN-GRU-AMSA model, which dynamically adjusts attention weights to achieve information fusion of features at different scales, thereby accurately outputting the health status evaluation results of the motor. The experimental results show that compared with other common deep learning models such as CNN, CNN-GRU, CNN-LSTM, and CNN-LSTM Attention, the CNN-GRU-AMSA model performs better in evaluation metrics such as root mean square error, mean absolute error, accuracy, Macro F1, and MicroF1. The model has a smaller fluctuation range and better stability in predicting residuals.
  • 图  1   矿用电动机健康状态评估总体框架

    Figure  1.   General framework of health state assessment of mine motor

    图  2   CNN−GRU模型

    Figure  2.   CNN-GRU model

    图  3   AMSA结构

    Figure  3.   Structure of adaptive multi-scale attention mechanism

    图  4   降噪处理后的HI曲线

    Figure  4.   Health index curve after noise reduction

    图  5   矿用电动机HI曲线

    Figure  5.   Health index curve of mine motor

    图  6   CNN−GRU−AMSA模型损失值

    Figure  6.   Loss value of CNN−GRU−AMSA model

    图  7   不同工况下CNN−GRU−AMSA模型预测结果的混淆矩阵

    Figure  7.   Confusion matrix of CNN−GRU−AMSA model prediction results under different working conditions

    图  8   不同模型的HI对比

    Figure  8.   Health index comparison of different models

    图  9   不同模型的预测残差对比

    Figure  9.   Comparison of predicted residuals of different models

    表  1   健康评估指标的个体贡献度与累计贡献度

    Table  1   Individual and cumulative contribution degree of health assessment index

    %
    主成分 个体贡献度 累计贡献度
    主成分1 85.68 85.68
    主成分2 12.86 98.54
    主成分3 0.94 99.48
    主成分4 0.26 99.74
    主成分5 0.24 99.98
    主成分6 0.02 100.00
    下载: 导出CSV

    表  2   矿用电动机健康状态评估类别

    Table  2   Mine motor health state assessment categories

    状态 健康(S1 良好(S2 恶化(S3 故障(S4
    HI (0.8,1.0] (0.6,0.8] (0.3,0.6] [0,0.3]
    下载: 导出CSV

    表  3   工况1下不同模型性能比较

    Table  3   Performance comparison of different models under working condition 1

    模型 RMSE MAE MAX ACC/% Macro F1 Micro F1
    CNN 0.0332 0.0235 0.2639 88.58 0.5648 0.5840
    CNN−GRU 0.0386 0.0275 0.2656 89.29 0.6003 0.6374
    CNN−LSTM 0.0310 0.0218 0.2467 88.20 0.5507 0.5602
    CNN−LSTM−Attention 0.0312 0.0219 0.239 1 87.95 0.5415 0.5442
    CNN−GRU−AMSA 0.009 6 0.006 4 0.2634 97.83 0.933 8 0.950 5
    下载: 导出CSV

    表  4   工况2下不同模型性能比较

    Table  4   Performance comparison of different models under working condition 2

    模型RMSEMAEMAXACC/%Macro F1Micro F1
    CNN0.03000.02290.328789.960.71340.7867
    CNN−GRU0.05270.03490.367185.490.61280.6443
    CNN−LSTM0.03460.02610.363886.930.64860.6958
    CNN−LSTM−Attention0.03710.02760.387486.570.64050.6822
    CNN−GRU−AMSA0.01410.00800.373396.790.93590.9426
    下载: 导出CSV

    表  5   工况3下不同模型性能比较

    Table  5   Performance comparison of different models under working condition 3

    模型RMSEMAEMAXACC/%Macro F1cMicro F1
    CNN0.03840.03130.128478.310.42460.4373
    CNN−GRU0.03470.02590.152190.160.59950.6079
    CNN−LSTM0.03870.02930.133676.820.39790.3956
    CNN−LSTM−Attention0.03680.02860.131878.640.42520.4346
    CNN−GRU−AMSA0.00800.00570.062297.380.95670.9698
    下载: 导出CSV

    表  6   工况4下不同模型性能比较

    Table  6   Performance comparison of different models under working condition 4

    模型RMSEMAEMAXACC/%Macro F1cMicro F1
    CNN0.04450.03060.198696.930.63310.6419
    CNN−GRU0.07390.04430.281783.040.45270.4748
    CNN−LSTM0.05080.03370.216495.660.61770.6299
    CNN−LSTM−Attention0.05000.03340.211995.750.61860.6307
    CNN−GRU−AMSA0.02500.01290.142897.690.96500.8232
    下载: 导出CSV

    表  7   工况5下不同模型性能比较

    Table  7   Performance comparison of different models under working condition 5

    模型RMSEMAEMAXACC/%Macro F1Micro F1
    CNN0.02880.02450.115291.010.51660.5521
    CNN−GRU0.03050.02380.147292.510.64010.6656
    CNN−LSTM0.02610.02180.110791.800.53360.5667
    CNN−LSTM−Attention0.02630.02220.115391.770.53220.5659
    CNN−GRU−AMSA0.00750.00540.090597.520.76870.8153
    下载: 导出CSV

    表  8   工况6下不同模型性能比较

    Table  8   Performance comparison of different models under working condition 6

    模型RMSEMAEMAXACC/%Macro F1Micro F1
    CNN0.02530.02100.247595.220.47250.5213
    CNN−GRU0.03010.02440.242195.280.47500.5238
    CNN−LSTM0.02200.01870.242695.130.46890.5174
    CNN−LSTM−Attention0.02280.01950.242895.280.47500.5238
    CNN−GRU−AMSA0.00850.00530.272298.810.62420.6395
    下载: 导出CSV

    表  9   工况7下不同模型性能比较

    Table  9   Performance comparison of different models under working condition 7

    模型RMSEMAEMAXACC/%Macro F1Micro F1
    CNN0.02900.02000.378387.870.41150.4394
    CNN−GRU0.03320.02260.360586.270.38800.4004
    CNN−LSTM0.02550.01770.347088.800.45200.5029
    CNN−LSTM−Attention0.02910.02060.356886.620.38460.4023
    CNN−GRU−AMSA0.00910.00640.263495.030.60810.6446
    下载: 导出CSV

    表  10   工况8下不同模型性能比较

    Table  10   Performance comparison of different models under working condition 8

    模型RMSEMAEMAXACC/%Macro F1Micro F1
    CNN0.03780.02840.271085.000.58790.5724
    CNN−GRU0.04640.03340.274583.750.57560.5634
    CNN−LSTM0.03580.02410.255393.940.63940.6313
    CNN−LSTM−Attention0.03480.02360.264593.220.63520.6265
    CNN−GRU−AMSA0.01400.00900.273396.180.94470.9421
    下载: 导出CSV
  • [1]

    SIDDIQUI K M,SAHAY K,GIRI V K,et al. Health monitoring and fault diagnosis in induction motor-a review[J]. International Journal of Advanced Research in Electrical,Electronics and Instrumentation Engineering,2014,3(1):6549-6565.

    [2]

    MEHALA N. Condition monitoring and fault diagnosis of induction motor using motor current signature analysis[D]. Kurushetra:National Institute of Technology,2010.

    [3]

    HOU Liqun,BERGMANN N W. Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(10):2787-2798. DOI: 10.1109/TIM.2012.2200817

    [4] 单增海,李志远,张旭,等. 基于多传感器信息融合和多粒度级联森林模型的液压泵健康状态评估[J]. 中国机械工程,2021,32(19):2374-2382.

    SHAN Zenghai,LI Zhiyuan,ZHANG Xu,et al. Health status assessment of hydraulic pumps based on multi-sensor information fusion and multi-grained cascade forest model[J]. China Mechanical Engineering,2021,32(19):2374-2382.

    [5] 雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4):1-9. DOI: 10.3901/JME.2021.04.001

    LEI Yaguo,XU Xuefang,CAI Xiao,et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering,2021,57(4):1-9. DOI: 10.3901/JME.2021.04.001

    [6]

    HU Weijun,ZHANG Yan,LI Lijie. Study of the application of deep convolutional neural networks (CNNs) in processing sensor data and biomedical images[J]. Sensors,2019,19(16). DOI: 10.3390/s19163584.

    [7]

    LIPTON Z C,BERKOWITZ J,ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. Computer Science,2015. DOI: 10.48550/arXiv.1506.00019.

    [8]

    YANG Chao,JIANG Wenxiang,GUO Zhongwen. Time series data classification based on dual path CNN-RNN cascade network[J]. IEEE Access,2019,7:155304-155312. DOI: 10.1109/ACCESS.2019.2949287

    [9] 樊盼盼,袁逸萍,孙文磊,等. 融合多时段SCADA数据的风电动机组风险态势预测[J]. 计算机集成制造系统,2021,27(7):1993-2004.

    FAN Panpan,YUAN Yiping,SUN Wenlei,et al. Risk situation prediction of wind turbine based on multi-period SCADA data[J]. Computer Integrated Manufacturing Systems,2021,27(7):1993-2004.

    [10] 袁逸萍,樊盼盼,马占伟. 基于EEMD−MCNN−GRU的滚动轴承剩余使用寿命预测方法:CN202010290930.0[P]. 2022-07-12.

    YUAN Yiping,FAN Panpan,MA Zhanwei. Prediction method of remaining service life of rolling bearing based on EEMD-MCNN−GRU:CN202010290930.0[P]. 2022-07-12.

    [11] 赵小强,张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报,2021,55(12):108-118.

    ZHAO Xiaoqiang,ZHANG Yazhou. Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions[J]. Journal of Xi'an Jiaotong University,2021,55(12):108-118.

    [12] 康涛,段蓉凯,杨磊,等. 融合多注意力机制的卷积神经网络轴承故障诊断方法[J]. 西安交通大学学报,2022,56(12):68-77.

    KANG Tao,DUAN Rongkai,YANG Lei,et al. Bearing fault diagnosis using convolutional neural network based on a multi-attention mechanism[J]. Journal of Xi'an Jiaotong University,2022,56(12):68-77.

    [13]

    DING Yifei,JIA Minping,MIAO Qiuhua,et al. Remaining useful life estimation using deep metric transfer learning for kernel regression[J]. Reliability Engineering & System Safety,2021,212. DOI: 10.1016/j.ress.2021.107583.

    [14] 谢丽蓉,王斌,包洪印,等. 基于EEMD−WOA−LSSVM的超短期风电功率预测[J]. 太阳能学报,2021,42(7):290-296.

    XIE Lirong,WANG Bin,BAO Hongyin,et al. Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica,2021,42(7):290-296.

    [15]

    MIAO Huihui,LI Bing,SUN Chuang,et al. Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks[J]. IEEE Transactions on Industrial Informatics,2019,15(9):5023-5032. DOI: 10.1109/TII.2019.2900295

    [16]

    HAUKE J,KOSSOWSKI T. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data[J]. Quaestiones Geographicae,2011,30(2):87-93. DOI: 10.2478/v10117-011-0021-1

    [17]

    ZHANG Yong,XIN Yuqi,LIU Zhiwei,et al. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE[J]. Reliability Engineering & System Safety,2022,220. DOI: 10.1016/j.ress.2021.108263.

    [18]

    LIN Jinshan,CHEN Qian. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion[J]. Mechanical Systems and Signal Processing,2013,38(2):515-533. DOI: 10.1016/j.ymssp.2012.12.014

    [19]

    SAVITZKY A,GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36(8):1627-1639. DOI: 10.1021/ac60214a047

    [20]

    HARBOLA S,COORS V. One dimensional convolutional neural network architectures for wind prediction[J]. Energy Conversion and Management,2019,195:70-75. DOI: 10.1016/j.enconman.2019.05.007

    [21]

    LIU Mingde,DING Lin,BAI Yulong. Application of hybrid model based on empirical mode decomposition,novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management,2021,233. DOI: 10.1016/j.enconman.2021.113917.

    [22]

    NIU Dongxiao,YU Min,SUN Lijie,et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy,2022,313. DOI: 10.1016/j.apenergy.2022.118801.

    [23]

    SUN Heng,CHEN Miaomiao,WENG Jian,et al. Anomaly detection for in-vehicle network using CNN-LSTM with attention mechanism[J]. IEEE Transactions on Vehicular Technology,2021,70(10):10880-10893. DOI: 10.1109/TVT.2021.3106940

    [24]

    KIM T S,SOHN S Y. Multitask learning for health condition identification and remaining useful life prediction:deep convolutional neural network approach[J]. Journal of Intelligent Manufacturing,2021,32(8):2169-2179. DOI: 10.1007/s10845-020-01630-w

  • 期刊类型引用(2)

    1. 徐田磊,曾成碧. 微电网储能容量优化配置算法仿真. 计算机仿真. 2024(02): 115-119 . 百度学术
    2. 罗家林,陈超,黄梅,辛迪熙,吕洪章. 弱电网矿区下构网型储能控制技术研究. 高压电器. 2023(07): 95-103 . 百度学术

    其他类型引用(3)

图(9)  /  表(10)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  43
  • PDF下载量:  46
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-02-24
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回