Quantitative analysis of coal particle size based on bi-level routing attention mechanism
-
摘要: 煤粒粒度分布特征与煤中甲烷气体传播规律的分析密切相关。目前,基于图像分割的煤粒粒度分析方法已成为获取煤粒粒度的主流方案之一,但存在上下文信息丢失、煤粒特征融合不当造成煤粒漏分割和过分割等问题。针对上述问题,设计了一种基于双层路由注意力机制(BRA)的煤粒粒度分析模型。在残差U型网络ResNet−UNet中嵌入BRA模块,得到B−ResUNet网络模型:为减少在煤粒分割过程中出现的漏分割问题,在ResNet−UNet网络的上采样前添加BRA模块,使网络根据上一层的特征调整当前特征层的重要性,增强特征的表达能力,提高长距离信息的传递能力;为减少在煤粒分割过程中出现的过分割问题,在ResNet−UNet网络的特征拼接模块后添加BRA模块,通过动态选择和聚合重要特征,实现更有效的特征融合。对分割出的煤粒进行特征信息提取,针对实验分析中采用的煤粒数据集的煤粒粒度与细胞大小相当,为精确表征煤粒粒度,采用等效圆粒径获取煤粒粒度及粒度分布。实验结果表明:① B−ResUNet网络模型的准确率、平均交并比、召回率较ResNet−UNet基础网络分别提高了0.6%,14.3%,35.9%,准确率达99.6%,平均交并比达92.6%,召回率达94.4%,B−ResUNet网络模型在煤样中具有较好的分割效果,能够检测出较为完整的颗粒结构。② 在上采样前和特征拼接后均引入BRA模块时,网络对煤粒的边缘区域给予了足够的关注,且对一些不太重要的区域减少了关注度,从而提高了网络的计算效率。③ 煤粒的粒度大小在1~2 mm内呈相对均衡的分布趋势,粒度在1~2 mm内的煤粒占比最大为99.04%,最小为90.59%,表明基于BRA的图像处理方法在粒度分析方面具有较高的准确性。Abstract: The distribution features of coal particle size are closely related to the analysis of methane gas propagation in coal. At present, the coal particle size analysis method based on image segmentation has become one of the mainstream solutions to obtain coal particle size. But there are problems such as loss of contextual information, improper fusion of coal particle features resulting in missed segmentation and over-segmentation of coal particles. In order to solve the above problems, a coal particle size analysis model based on bi-level routing attention (BRA) is designed. The BRA module is embedded in the residual U-shaped network ResNet-UNet to obtain the B-ResUNet network model. To reduce the problem of missed segmentation in coal particle segmentation, a BRA module is added before upsampling in the ResNet-UNet network. It allows the network to adjust the importance of the current feature layer based on the features of the previous layer, enhance the expression capability of features, and improve the transmission capability of long-distance information. To reduce the problem of over segmentation in coal particle segmentation, a BRA module is added after the feature concatenation module of the ResNet-UNet network. By dynamically selecting and aggregating important features, more effective feature fusion is achieved. The feature information from the segmented coal particles is extracted. The coal particle size of the coal particle dataset used in the experimental analysis is equivalent to the cell size. In order to accurately characterize the coal particle size, equivalent circular particle size is used to obtain the coal particle size and size distribution. The experimental results show the following points. ① The accuracy, average intersection to union ratio, and recall of the B-ResUNet network model have been improved by 06.%, 14.3%, and 35.9% compared to the ResNet-UNet basic network, with an accuracy of 99.6%, an average intersection to union ratio of 92.6%, and a recall of 94.4%. The B-ResUNet network model has good segmentation performance in coal samples and can detect relatively complete particle structures. ② When the BRA module is introduced before upsampling and after feature concatenation, the network pays sufficient attention to the edge areas of coal particles and reduces attention to some less important areas, thereby improving the computational efficiency of the network. ③ The particle size of coal particles shows a relatively balanced distribution trend within 1-2 mm, with the maximum proportion of coal particles within 1-2 mm being 99.04% and the minimum being 90.59%. It indicates that the image processing method based on BRA has high accuracy in particle size analysis.
-
0. 引言
在厚硬顶板沿空留巷条件下,受掘进和采动影响,巷道底板变形,出现底鼓。随着工作面推进,基本顶在采空区上方形成悬顶[1]。一旦发生顶板旋转下沉,会对煤岩体和巷旁支护造成冲击挤压[2],加剧巷道底板变形[3]。底鼓现象造成巷道断面减小,阻碍设备运输、人员行走,影响工作面正常回采,增加大量维修工作和维护费用。切顶卸压技术可以在巷道采空区一侧形成预裂切缝面[4],切断采空区和巷道顶板之间的联系,改善巷道围岩结构,减少底板变形量。因此,根据切顶卸压前后的围岩结构变化进一步研究巷道底鼓的变形机理具有一定意义。
针对沿空留巷切顶卸压的底板变形问题,学者们进行了大量研究。康志鹏等[5]以厚煤层软底留巷为背景,提出对底板进行合适的让压,以实现巷道柔性支护。于光远等[6]提出通过“切顶卸压+柔性让压+补强锚索控顶+双控锚杆控帮”的方式控制底鼓,取得了较好的效果。何满潮等[7]针对深部高应力复合破碎顶板切顶留巷,设计了一种新型可缩U型钢挡矸结构,可有效控制巷道底板变形。张幼振[8]提出了巷道底鼓机械化治理的技术思路和机械化施工系统的配置原则,研发了巷道修复机、底板锚固钻机等专用主导机械设备,可有效治理巷道底鼓。申斌学等[9]提出了切顶卸压柔模墙支护沿空留巷技术,在切顶后使用该技术可以对巷道顶板进行强力支护,抑制巷道底鼓。张宇旭等[10]通过试验证明了底板注浆与锚杆锚索联合支护可以改善底板应力状态,控制底板位移。以上有关巷道底鼓研究与实践主要探讨巷道底板的变形机理及控制技术,对沿空留巷切顶卸压前后底板力学分析不全面。针对上述问题,本文建立了巷道围岩和底板力学模型,分析各区域对巷道底板的作用,并推导了沿空留巷切顶前后巷道底鼓变形量计算公式。
1. 工程背景
以淮南某矿沿空留巷工作面为研究对象,工作面长210 m,走向长1 784 m,1号煤厚3.5~8.5 m,平均厚度为6.5 m。煤层倾角为6~8°,平均值为7°。工作面煤层直接顶主要为泥岩,平均厚1 m;基本顶主要为中细砂岩,平均厚13.6 m;直接底主要为泥岩,平均厚0.5 m;基本底主要为砂质泥岩,平均厚3.0 m。工作面布置及岩性特征如图1所示。
2. 巷道底鼓力学分析
2.1 沿空留巷围岩结构
工作面开挖后,因直接顶极薄且强度较低,采空区直接顶垮落,基本顶在实体煤体侧断裂。巷旁支护体在顶板载荷作用下产生变形,压缩下沉。此时顶板处于给定变形状态[11],如图2所示,巷旁支护体主要承受直接顶及悬露基本顶岩块B的重力。上覆岩层破断岩块A,B,C三者相互铰接形成承压结构[12],承载上覆岩层压力并控制下方巷道的围岩稳定。岩块C下沉后,在上覆岩层载荷作用下与矸石接触发生挤压,并逐渐被压实[13]。
2.2 围岩结构力学分析
在给定变形条件下,侧向实体煤承担围岩应力峰值,巷旁支护体无法有效控制基本顶,岩块B发生旋转下沉。对沿空留巷顶板力学模型作如下假设:① 基本顶于实体煤侧弹塑性交界处断裂,绕直接顶向采空区侧旋转倾斜。② 采空区矸石对岩块C产生支撑力,对岩块B支撑力为0[14]。③ 忽略直接顶、基本顶及更上位岩层之间的剪切力。④ 基本顶上覆岩层载荷均匀施加在基本顶上。⑤ 巷内支护的变形忽略不计[15]。根据假设条件,建立沿空留巷力学模型,如图3所示。
基本顶沿实体煤弹塑性区交界处上方$ {A}' $点断裂并向采空区旋转,煤体极限平衡区宽度x0[16]及塑性区煤体对顶板的支撑力σ分别为
$$ {x_0} = \dfrac{{{h_{\rm{c}}}\lambda }}{{2\tan\; \varphi }}\ln\;{\dfrac{{k\gamma {H} + {c}/{{\tan\; \varphi }}}}{{{c}/{{\tan\; \varphi }} + {{{p_{\rm{x}}}}}/{\lambda }}}} $$ (1) $$ \sigma = \left( {\dfrac{c}{{\tan\; \varphi }} + \dfrac{{{p_{\rm{x}}}}}{\lambda }} \right){\exp\left({\dfrac{{2x_0\tan\; \varphi }}{{{h_{\rm{c}}}\lambda }}}\right)} - \dfrac{c}{{\tan\; \varphi }} $$ (2) 式中:hc为煤层厚度;λ为煤体侧压系数;φ为煤层界面内摩擦角;k为煤帮侧应力集中系数;γ为岩层平均容重;H为开采深度;c为煤层界面黏聚力;px为煤帮侧向支护阻力。
基本顶沿倾向垮落长度L与垮落步距l[17]分别为
$$ \left\{ \begin{gathered} l = h\sqrt {{{2{R_{\rm{T}}}}}/{{{q_2}}}} \\ L = l\left( { {l}/{S} + \sqrt {{{{l^2}}}/{{{S^2}}} + {3}/{2}} } \right) \\ \end{gathered} \right. $$ (3) 式中:h为基本顶岩层厚度;RT为基本顶抗拉强度;q2为基本顶载荷;S为基本顶沿工作面悬露长度。
岩块C水平方向受力取0,可得
$$ {T_{\rm{B}}} = {T_{\rm{C}}} = \dfrac{{{q_2}{L^2}}}{{2(h - \Delta {S_{\rm{ B}}})}} $$ (4) 式中:TB为岩块B在$ {B}' $处所受水平推力;TC为岩块C在$ {C}' $处所受水平推力;$ \Delta {S}_{\rm{ B}} $为岩块B在$ {B}' $处的下沉量。
岩块C垂直方向受力取0,可得
$$ {N_{\rm{B}}} + {F_{\rm{G}}} = {N_{\rm{B}}} + {K_{\rm{G}}}L = {N_{\rm{C}}} + {q_2}L $$ (5) 式中:$ {N}_{\rm{B}} $,$ {N}_{\rm{C}} $分别为岩块B,C所受剪切力;FG为采空区矸石对基本顶的支撑力;$ {K}_{\rm{G}} $为采空区矸石支撑系数。
$ {B}' $点力矩取0,可得
$$ {M_{\rm{B}}} + {T_{\rm{C}}}(h - \Delta {{S}_{\rm{ C}}}) + {F_{\rm{G}}}L/2 - {N_{\rm{C}}}L - {q_2}{L^2}/2 = 0 $$ (6) $$ {N_{\rm{C}}} = \dfrac{{{M_{\rm{B}}} + {T_{\rm{B}}}(h - \Delta {{S}_{\rm{ C}}}) - {q_2}{L^2}/2}}{L} + {F_{\rm{G}}}/2 $$ (7) $$ {N_{\rm{B}}} = \dfrac{{{M_{\rm{B}}} + {T_{\rm{B}}}(h - \Delta {{S}_{\rm{ C}}}) + {q_2}{L^2}/2}}{L} - {F_{\rm{G}}}/2 $$ (8) 式中MB为岩块B在$ {B}' $处的残余弯矩。
对于岩块B,$ {A}' $点力矩取0,可得
$$ \begin{split} &{M_{\rm{A}}} + {M_0} + {f_{\rm{t}}}(a + b + {x_0}) + \int_0^{{x_0}} \sigma ({x_0} - x){\mathrm{d}}x +{T_{\rm{B}}}(h - \Delta {{S}_{\rm{ B}}}) - \\ &\qquad {M_{\rm{B}}} - {q_2}{l^2}/2 - {q_1}({x_0} + a + b)^2/2 -{N_{\rm{B}}}l = 0 \\[-5pt] \end{split} $$ (9) 式中:MA为岩块A在$ {A}' $处的残余弯矩;M0为直接顶对基本顶的抗弯弯矩;ft为巷旁支护阻力;a为巷旁支护体宽度;b为巷道宽度;x为模型中任一点的横坐标;q1为直接顶载荷。
联立式(3)、式(4)、式(8)、式(9)得
$$ \begin{split} {f_{\rm{t}}} =& \left\{ {} \right.2{M_{\rm{B}}} + {q_2}{L^2} + {q_1}{\left( {{x_0} + a + b} \right)^2}/2 + \\ & {q_2}{L^2}\left( {\Delta {{S}_{\rm{ B}}} - \Delta {{S}_{\rm{ C}}}} \right)/\left[ {2\left( {h - \Delta {{S}_{\rm{ B}}}} \right)} \right] - {F_{\rm{G}}}L/2 - {M_{\rm{A}}} - \\ & {M_0} - \int_0^{{x_0}} {\sigma \left( {{x_0} - x} \right){\rm{d}}x} \left. {} \right\}/ \left( {{x_0} + b + a/2} \right) \end{split} $$ (10) 式中$ \Delta {S}_{\rm{ C}} $为岩块C在$ {C}' $处的下沉量。
2.3 巷道底板受力分析
顶板垮落后,底板应力重新分布。为了简化计算,假设煤帮弹性区、塑性区的垂直应力呈线性分布,沿工作面走向方向取剖面,建立沿空留巷底板力学模型,如图4所示。fg为顶板破断岩块对底板的作用力;xm为顶板旋转下沉区宽度;fm为冒落矸石的重力;x1为弹性压缩区宽度;f0,f1分别为塑性区、弹性压缩区煤体对底板的作用力。
实体煤塑性区作用在底板的力为
$$ {f_0} = {{\left( {k - 1} \right)\gamma H}}\left( {{x_0} - x} \right)/{{{x_0}}} \quad - {x_0} \leqslant x \leqslant 0 $$ (11) 实体煤的弹性压缩区和塑性区共同承担了上覆岩层载荷和采动引起的应力重新分布,因此$ \left({x}_{1}+ {x}_{0}\right)\left(k+1\right)\gamma H/2=\gamma H{S}_{ 0}/2 $,S0为工作面长度,则
$$ {x_1} = {{{S_{ 0}}}}/{{(k + 1)}} - {x_0} $$ (12) 实体煤弹性压缩区作用在底板的力为
$$ {f_1} = {{\left( {k - 1} \right)\gamma H}}\left( {x - {x_1}} \right)/{{({x_1} - {x_0})}} \quad - {x_0} - {x_1} \leqslant x \leqslant - {x_0} $$ (13) 直接顶垮落矸石对底板的作用力为
$$ {f_{\text{m}}} = {h_1}{\gamma _1} $$ (14) 式中:h1为直接顶岩层厚度;γ1为直接顶岩层容重。
上方基本顶岩块C垮落后,沿倾向逐渐将矸石堆压实。顶板旋转下沉区宽度[18]为
$$ {x_{\rm{m}}} = h\cot\; \delta + L $$ (15) 式中δ为基本顶的破断角[19]。
$$ \delta=45^{\circ}-\dfrac{1}{2}\varphi_2+\dfrac{1}{2}\arctan l\sqrt{\dfrac{R_{\rm{T}}}{q_2}} $$ (16) 式中φ2为基本顶内摩擦角。
顶板破断下沉岩块对底板的作用力为
$$ {f_{\rm{g}}} = {{2{F_{\rm{G}}}}}\left[ {x - \left( {L - {x_0}} \right)} \right]/{{x_{\rm{m}}^2}} $$ (17) 2.4 巷道底板变形分析
引用等效载荷概念[20],以消除原岩应力$\gamma H$对底板变形的影响。建立沿空留巷底板等效载荷分布力学模型,如图5所示。
在半无限平面边界上,点I所受应力为原岩应力,设垂直位移为0,将该点设为基点,则分布载荷q(x)在边界上点J(横坐标为xJ)处的垂直位移[21-22]为
$$ {\mathrm{d}}{U_{{J}}} = \dfrac{{2q\left( x \right)}}{{{\text{π}} {E_{\rm{d}}}}}\ln \dfrac{s}{\rho }{\mathrm{d}}\rho $$ (18) 式中:UJ为点J处的底鼓量;Ed为巷道底板岩层弹性模量;s为基点I到q(x)的距离;ρ为点J到q(x)的距离。
将不同分布载荷在J处引起的垂直位移相加,求得J处的底鼓量:
$$ \begin{split} {U_{{J}}} =& \dfrac{2}{{{\text{π}} {E_{\rm{d}}}}}\Bigg[\int_{ - \left( {{x_0} + {x_1}} \right)}^{ - {x_0}} {\left( {{f_1} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} + \int_{ - {x_0}}^0 {\left( {{f_0} - \gamma H} \right)} \\ &\ln \dfrac{s}{\rho }{\rm{d}}x +\int_b^{b + a} {\left( {{f_{\rm{t}}} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} + \int_{b + a}^{L - {x_0}} {({f_{\rm{m}}} - } \gamma H) \\ &\ln \dfrac{s}{\rho }{\rm{d}}x +\int_{L - {x_0}}^{L - {x_0} + {x_{\rm{m}}}} {\left( {{f_{\rm{m}}} + {f_{\rm{g}}} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} \Bigg]\\[-5pt] \end{split} $$ (19) 3. 切顶卸压对沿空留巷围岩结构影响
3.1 切顶卸压围岩结构力学分析
通过预爆破切顶,基本顶沿切顶缝断裂,侧向悬臂梁长度大幅减小,在巷道上方形成短臂梁结构[23]。由于直接顶厚度极薄,垮落后形成的矸石堆不足以充填整个采空区并支撑上覆岩层,所以采空区上方破断基本顶沿切缝大幅下沉并压实下方矸石堆。切顶后沿空留巷围岩结构如图6所示。
对切顶后沿空留巷顶板力学模型作如下假设:① 切顶角度为90°,简化力学模型。② 采空区侧基本顶沿切缝直接断裂垮落,岩块下沉时旋转角度为0。③ 垮落后的矸石堆积在采空区,对下沉基本顶起到支撑作用[24]。④ 忽略直接顶、基本顶及更上位岩层之间的剪切力。⑤ 基本顶上覆岩层载荷均匀施加在基本顶上。⑥ 巷内支护的变形忽略不计。⑦ 实体煤弹塑性区域及煤层底板所受应力在切顶前后的变化较覆岩整体的运移程度小,故忽略不计。
根据假设,构建切顶后沿空留巷力学模型,如图7所示。$ {T}_{\rm{B}}' $为岩块A在$ {B}' $处所受水平推力;$ {T}_{\rm{C}}' $为岩块B在$ {C}' $处所受水平推力;$ {N}_{\rm{B}}' $,$ {N}_{\rm{C}}' $分别为岩块A,B受到的剪切力;$ {M}_{\rm{A}}' $为岩块A在$ {A}' $处产生的弯矩;$ {M}_{\rm{B}}' $为岩块B在$ {B}' $处的残余弯矩;$ {f}_{\rm{t}}' $为切顶后巷旁支护阻力;$ {F}_{\rm{G}}' $为切顶后采空区矸石对基本顶支撑力。
根据静力平衡可得
$$ {N'_{\rm{C}}} = \dfrac{{{M'_{\rm{B}}} + {{T}'_{\rm{C}}}(h - \Delta {{S}'_{\rm{C}}}) - q{L^2}/2}}{L} + {F'_{\rm{G}}}/2 $$ (20) $$ {N'_{\rm{B}}} = \dfrac{{{M'_{\rm{B}}} + {{T}'_{\rm{C}}}(h - \Delta {{S}'_{\rm{C}}}) + q{L^2}/2}}{L} - {F'_{\rm{G}}}/2 $$ (21) $$ {T'_{\rm{C}}} = \dfrac{{{q_2}{L^2}}}{{2(h - \Delta {S'_{\rm{C}}})}} $$ (22) 式中$ \Delta {S}_{\rm{ C}}' $为岩块B在$ {C}' $处的下沉量。
$$ {\begin{split} {f'_{\rm{t}}} =& [{M'_{\rm{B}}}(L + {x_0} + a + b)/L + {q_2}{({x_0} + a + b)^2}/2 + {q_2}L({x_0} +\\ & a + b)/2 + {q_1}{({x_0} + a + b)^2}/2 - {{F}'_{\rm{G}}}({x_0} + a + b)/2 -\\ & {M'_{\rm{A}}} - {M_0} - \int_0^{{x_0}} \sigma ({x_0} - x){\rm{d}}x]/({x_0} + b + a/2) \end{split}} $$ (23) 3.2 切顶卸压巷道底板变形分析
切顶后沿空留巷底板等效载荷分布力学模型如图8所示。
切顶后顶板破断岩块对底板作用力为
$$ {f'_{\rm{g}}} = {F'_{\rm{G}}} = {K'_{\rm{G}}}L $$ (24) 式中$ {K}_{\rm{G}}' $为切顶后采空区矸石支撑系数。
底板上M点的底鼓量为
$${\begin{split} {U'_{\rm{M}}} =& \dfrac{2}{{{\text{π}} {E_{\rm{d}}}}}\Bigg[\int_{ - \left( {{x_0} + {x_1}} \right)}^{ - {x_0}} {\left( {{f_1} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} + \int_{ - {x_0}}^0 {\left( {{f_0} - \gamma H} \right)} \ln \dfrac{s}{\rho }{\rm{d}}x + \\ & \int_0^{b + a} {\left( {{f'_{\rm{t}}} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} + \int_{b + a}^{b + a + {x_{\rm{m}}}} {\left( {{f_{\rm{m}}} + {f'_{\rm{g}}} - \gamma H} \right)\ln \dfrac{s}{\rho }{\rm{d}}x} \Bigg] \\ \end{split}} $$ (25) 4. 切顶卸压底鼓数值模拟研究
4.1 模型的建立
采用Mohr-Coulomb本构模型,从现场获取巷道围岩岩体试样,按照相关要求制备成相应的标准试件。各岩层物理力学参数见表1。
表 1 各岩层物理力学参数Table 1. Physical and mechanical parameters of each rock formation岩性 弹性模
量/GPa抗拉强
度/MPa内摩擦
角/(°)泊松比 容重/
(kN·m−3)黏聚
力/MPa细砂岩 42 6.50 25 0.16 27.0 5.4 粉细砂岩 18 2.35 31 0.21 26.0 3.8 中砂岩 12 2.11 28 0.22 26.2 3.3 泥岩 6 1.47 24 0.21 22.5 2.4 1煤 0.8 1.20 21 0.35 13.8 1.8 砂质泥岩 9 2.91 24 0.23 25.2 2.8 根据地质资料建立立体模型,模拟在上一工作面回采完毕后,接替回采1615A工作面时,切顶卸压对巷道底板变形的控制效果。
4.2 沿空留巷巷道演化特征
4.2.1 切顶卸压巷道围岩破坏分布特征及应力分析
沿走向取剖面,切顶卸压前后工作面处破坏分布特征如图9所示。可看出工作面回采时采空区上方形成弹塑性破坏区域,且随工作面的推进逐渐向高位岩层发育,由破坏形态可知采空区上覆中位岩层逐渐趋于稳定。巷道实体煤侧及顶部围岩在切顶卸压后,破坏区域显著减小。随着工作面的推进,采用切顶卸压技术可有效缩小巷道实体煤侧面及顶部的破坏区域,维持巷道围岩结构稳定。
沿走向取剖面,切顶卸压前后工作面处垂直应力如图10所示。可看出:切顶卸压前,巷道实体煤侧出现应力集中现象,应力峰值随着工作面推进由19.22 MPa增加至23.13 MPa,巷旁支护阻力峰值为5.75 MPa,巷道底板中部应力峰值为9.77 MPa,对巷道围岩稳定造成严重影响;切顶卸压后,应力集中向巷道顶板上方及深部转移,远离巷道围岩,应力峰值由19.92 MPa增加至28.20 MPa,巷旁支护阻力峰值减少至2.58 MPa,巷道底板中部应力峰值为7.25 MPa,巷道顶板区域所受应力显著减小。采用切顶卸压技术可有效优化巷道围岩应力结构,巷旁支护阻力降幅为56.14%,底板最大应力平均降幅为25.78%。
4.2.2 切顶卸压巷道底鼓分析
对整条巷道底板变形量进行监测,结果如图11所示。可知切顶前,工作面超前处巷道底板变形量在503~917 mm波动,均值为664 mm;切顶后,工作面超前处巷道底板变形量在204~409 mm波动,均值为305 mm,较切顶前下降54.07%。沿空留巷切顶卸压有效缓解了沿空留巷底鼓。
5. 工程应用
预裂切缝钻孔深12 m,切缝角度为15°。采用双向聚能爆破预裂技术,切缝距煤帮100 mm,切缝孔间距为500 mm。特质聚能管外径为42 mm,内径为36.50 mm,管长1 500 mm。炮空底部装药量为3~5卷,炮孔处为1~2卷,炸药规格为ϕ35×330 mm/卷。现场炮孔布置如图12所示。
结合现场数据对巷道底鼓解析解进行验证。基本参数:hc=6.5 m,h=13.6 m,px=0.1 MPa,φ=24°,H=600 m,γ=25 kN/m3,c=2.4 MPa,k=2.6,S0=200 m,Ed=9.0 GPa,η=0.9,KP0=1.10,a=1 m,b=5 m。
其他参数设置:直接顶及基本顶载荷根据q=γh确定;垮落长度L=20 m;岩梁断裂处残余弯矩为0;$ \Delta {S}_{\rm{ B}}=\Delta {S}_{\rm{ C}} $;实体煤塑性区宽度x0=10.3 m;切顶前后采空区矸石对基本顶支撑力FG=5.237 MN,$ {F}_{\rm{G}}' $=10.532 MN;切顶前后巷旁支护阻力ft=5.564 5 MN,$ {f}_{\rm{t}}' $=2.194 2 MN。
将上述参数代入式(19)、式(25),可得切顶前后巷道底鼓量$ {U}_{\rm{M}}=-709.345\;1\;\mathrm{m}\mathrm{m} $,$ {U}_{\rm{M}}'=320.965\;8\;\mathrm{m}\mathrm{m} $。
切顶前后沿空留巷底鼓情况如图13所示。可看出沿空留巷切顶后,巷道底鼓量减小,切顶卸压有效改善巷道底板破坏情况。
6. 结论
1) 针对工作面现场情况,运用给定变形理论,构建了沿空留巷顶板岩层力学模型,推导出切顶卸压前后巷旁支护阻力的计算方法。
2) 运用弹性力学知识,结合底板各区域所受载荷,推导出切顶卸压前后巷道底鼓计算公式。分析得出巷旁煤帮弹塑性区、巷道支护体及顶板下沉区底板所受载荷共同影响巷道底鼓量大小。
3) 切顶卸压后,应力集中现象向巷道顶板上方及深部转移,巷道底板最大应力平均降幅为25.78%,巷旁支护阻力平均降幅为56.14%;厚硬顶板沿空留巷底鼓量由709.345 1 mm降至320.965 8 mm。切顶卸压技术可以优化巷道围岩应力结构,抑制巷道底鼓,有效改善底板破坏情况。
-
表 1 不同网络模型评价指标对比
Table 1 Comparison of the evaluation indexes of different network models
% 模型 准确率 平均交并比 召回率 PAN 98.3 62.8 27.8 PSPNet 98.4 66.6 36.9 U−Net 99.1 79.4 62.0 Link−Net 97.9 68.6 60.3 ResNet−UNet 99.0 78.3 58.5 B−ResUNet 99.6 92.6 94.4 表 2 各网络模型性能
Table 2 Network performan
% 模型 准确率 平均交并比 召回率 ResNet−UNet 99.0 78.3 58.5 ResNet−采样BRA 99.4 87.2 79.0 ResNet−拼接BRA 99.2 82.6 66.5 B−ResUNet 99.6 92.6 94.4 表 3 不同方法测量粒度的准确率
Table 3 Accuracy of particle size measurement by different methods
% 测量方法 准确率 第1组 第2组 第3组 第4组 第5组 第6组 LPA方法 62.18 57.78 56.44 38.75 67.35 68.78 形态学方法 84.50 87.83 87.82 92.0 88.48 94.29 本文方法 97.42 97.37 89.80 95.56 96.47 96.15 -
[1] 邢震,韩安,陈晓晶,等. 基于工业互联网的智能矿山灾害数字孪生研究[J]. 工矿自动化,2023,49(2):23-30,55. XING Zhen,HAN An,CHEN Xiaojing,et al. Research on intelligent mine disaster digital twin based on industrial Internet[J]. Journal of Mine Automation,2023,49(2):23-30,55.
[2] 张哲,魏晨慧,刘书源,等. 煤粒尺寸对气体扩散过程影响的数值模拟研究[J]. 矿业研究与开发,2021,41(7):85-92. ZHANG Zhe,WEI Chenhui,LIU Shuyuan,et al. Numerical simulation study of the influence of coal particle size on gas diffusion process[J]. Mining Research and Development,2021,41(7):85-92.
[3] 马卫国,曾立,曾琦,等. 真空过滤数值模拟和试验验证[J]. 流体机械,2022,50(12):49-55. MA Weiguo,ZENG Li,ZENG Qi,et al. Numerical simulation and experimental verification of vacuum filtration[J]. Fluid Machinery,2022,50(12):49-55.
[4] 李文凯,吴玉新,黄志民,等. 激光粒度分析和筛分法测粒径分布的比较[J]. 中国粉体技术,2007(5):10-13. LI Wenkai,WU Yuxin,HUANG Zhimin,et al. Measurement results comparison between laser particle analyzer and sieving method in particle size distribution[J]. China Powder Science and Technology,2007(5):10-13.
[5] LIU Jingjing,CHENG Deqiang,LI Yunlong,et al. Quantitative evaluation of the influence of coal particle size distribution on gas diffusion coefficient by image processing method[J]. Fuel,2022,314:122946. DOI: 10.1016/j.fuel.2021.122946
[6] GUIDA G,VIGGIANI G M B,CASINI F. Multi-scale morphological descriptors from the fractal analysis of particle contour[J]. Acta Geotech,2020,15(5):1067-1080. DOI: 10.1007/s11440-019-00772-3
[7] SU D,YAN W M. Prediction of 3D size and shape descriptors of irregular granular particles from projected 2D images[J]. Acta Geotech,2020,15(6):1533-1555. DOI: 10.1007/s11440-019-00845-3
[8] LAI Zhengshou,CHEN Qiushi. Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method[J]. Acta Geotech,2019,14(1):1-18. DOI: 10.1007/s11440-018-0759-x
[9] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365. CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
[10] 李颖,李秀宇,卢兆林,等. 基于深度学习的煤粉颗粒CT图像分割方法[J]. 计算机工程与设计,2022,43(8):2252-2259. LI Ying,LI Xiuyu,LU Zhaolin,et al. Coal particle CT image segmentation method based on deep learning[J]. Computer Engineering and Design,2022,43(8):2252-2259.
[11] 徐江川,金国强,朱天奕,等. 基于深度学习U−Net模型的石块图像分割算法[J]. 工业控制计算机,2018,31(4):98-99,102. XU Jiangchuan,JIN Guoqiang,ZHU Tianyi,et al. Segmentation of rock images based on U-Net[J]. Industrial Control Computer,2018,31(4):98-99,102.
[12] 王征,张赫林,李冬艳. 特征压缩激活作用下U−Net网络的煤尘颗粒特征提取[J]. 煤炭学报,2021,46(9):3056-3065. WANG Zheng,ZHANG Helin,LI Dongyan. Feature extraction of coal dust particles based on U-Net combined with squeeze and excitation module[J]. Journal of China Coal Society,2021,46(9):3056-3065.
[13] ZHU Lei,WANG Xinjiang,KE Zhanghan,et al. BiFormer:vision transformer with bi-level routing attention[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:10323-10333.
[14] 梅昕苏. 基于多粒度Top−k查询的流式数据事件获取方法研究[D]. 沈阳:辽宁大学,2019. MEI Xinsu. Research on streaming data event acquisition method based on multi-granular Top-k query[D]. Shenyang:Liaoning University,2019.
[15] LIU Huajie,XU Ke. Recognition of gangues from color images using convolutional neural networks with attention mechanism[J]. Measurement,2023,206:1-13.
[16] 伊建峰,黎思成,吕珊,等. 基于频域数据增强及YOLOv7的动火作业检测模型[J]. 计算机应用,2023,43(增刊2):285-290. YI Jianfeng,LI Sicheng,LYU Shan,et al. Hot work detection model based on frequency domain data enhancement and YOLOv7[J]. Journal of Computer Applications,2023,43(S2):285-290.
[17] ZHOU Buzhuang,YANG Shengqiang,JIANG Xiaoyuan,et al. Experimental study on oxygen adsorption capacity and oxidation characteristics of coal samples with different particle sizes[J]. Fuel,2023,331. DOI: 10.1016/J.FUEL.2022.125954.
[18] MIYAKAWA T,TAKETANI F,TOBO Y,et al. Measurements of aerosol particle size distributions and INPs over the Southern Ocean in the late austral summer of 2017 on board the R/V Mirai:importance of the marine boundary layer structure[J]. Earth and Space Science,2023,10(3). DOI: 10.1029/2022EA002736.
[19] TANG Songlei,LIU Qiang,TANG Hong,et al. Study on the movement of pulverized coal particles in fractal fracture network[J]. ACS Omega,2023. DOI: 10.1021/acsomega.3c02902.
[20] REN Sucheng,ZHOU Daquan,HE Shengfeng,et al. Shunted self-attention via multi-scale token aggregation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans,2022:10853-10862.
[21] LIU Jingjing,LIU Ruihang,ZHANG Haoxiang,et al. Fast image processing method for coal particle cluster box dimension measurement and its application in diffusion coefficient testing[J]. Fuel,2023,352. DOI: 10.1016/J.FUEL.2023.129050.
[22] RUSSELL B,TORRALBA A,MURPHY K P,et al. LabelMe:a database and web-based tool for image annotation[J]. International Journal of Computer Vision,2008,77(1/2/3):157-173.
[23] LIU Shu,QI Lu,QIN Haifang,et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:8759-8768.
[24] ZHU Xiliang,CHENG Zhaoyun,WANG Sheng,et al. Coronary angiography image segmentation based on PSPNet[J]. Computer Methods and Programs in Biomedicine,2021. DOI: 10.1016/J.CMPB.2020.105897.
[25] DU Getao,GAO Xu,LIANG Jimin,et al. Medical image segmentation based on U-net:a review[J]. Journal of Imaging Science and Technology,2020,64(2). DOI: 10.2352/J.ImagingSci.Technol.2020.64.2.020508.
[26] CAI Junxiong,MU Taijiang,LAI Yukun,et al. LinkNet:2D-3D linked multi-modal network for online semantic segmentation of RGB-D videos[J]. Computers & Graphics,2021,98:37-47.
[27] QIN Jiayin,SUN Yibo,WU Luji. Research on gear surface damage identification based on the ResNet Network[C]. The 2nd International Conference on Mechanical Automation and Electronic Information Engineering,Guizhou,2023. DOI: 10.1088/1742-6596/2419/1/012090.
-
期刊类型引用(6)
1. 李刚,刘航,迟国铭,石占山,范永君. 大柳塔煤矿沿空留巷柔模砼墙支护阻力核定及失稳判据研究. 工矿自动化. 2025(01): 145-155 . 本站查看
2. 贺宏元. 近距离煤层开采底板变形控制方法研究. 凿岩机械气动工具. 2025(02): 58-60 . 百度学术
3. 王伟. 综采面沿空巷道切顶卸压围岩稳定性控制技术研究. 凿岩机械气动工具. 2025(04): 167-169 . 百度学术
4. 何浩达,娄培杰. 预裂爆破切顶卸压技术及切顶参数合理选取研究. 河南科技. 2025(07): 34-38 . 百度学术
5. 吕彦国. 深孔爆破切顶卸压沿空留巷支护技术研究. 建井技术. 2024(06): 1-7 . 百度学术
6. 孟国龙. 某深部煤层综采工作面切顶卸压留巷技术研究. 现代矿业. 2024(12): 48-51+59 . 百度学术
其他类型引用(0)