掘锚机机载钻机姿态调整分析

吴迪, 符宝鼎, 孙博, 康乐, 刘治翔, 邹康

吴迪,符宝鼎,孙博,等. 掘锚机机载钻机姿态调整分析[J]. 工矿自动化,2024,50(1):104-114. DOI: 10.13272/j.issn.1671-251x.2023060016
引用本文: 吴迪,符宝鼎,孙博,等. 掘锚机机载钻机姿态调整分析[J]. 工矿自动化,2024,50(1):104-114. DOI: 10.13272/j.issn.1671-251x.2023060016
WU Di, FU Baoding, SUN Bo, et al. Analysis of attitude adjustment for airborne drilling rig of anchor excavator[J]. Journal of Mine Automation,2024,50(1):104-114. DOI: 10.13272/j.issn.1671-251x.2023060016
Citation: WU Di, FU Baoding, SUN Bo, et al. Analysis of attitude adjustment for airborne drilling rig of anchor excavator[J]. Journal of Mine Automation,2024,50(1):104-114. DOI: 10.13272/j.issn.1671-251x.2023060016

掘锚机机载钻机姿态调整分析

基金项目: 国家自然科学基金资助项目(51904142);辽宁省应用基础研究计划项目(2023JH2/101600061)。
详细信息
    作者简介:

    吴迪(1983—),女,辽宁锦州人,讲师,硕士,主要研究方向为掘进机动态特性研究与控制,E-mail:643116324@qq.com

    通讯作者:

    邹康(1998—),男,江西瑞金人,硕士研究生,研究方向为煤矿智能掘进成套装备及技术,E-mail:zk451056@163.com

  • 中图分类号: TD421

Analysis of attitude adjustment for airborne drilling rig of anchor excavator

  • 摘要: 探放水作业前后,前探钻机的部署需耗费大量时间。在掘锚机上装载超前钻探设备可减少设备部署时间,提高钻探效率。目前针对集掘、锚、探于一体的掘进机机组的研究大多聚焦于设备的结构设计及液压控制系统设计,对于不同结构间干涉特性的研究相对较少。分析了机载钻机姿态调整过程中的干涉情况,根据姿态调整时的几何位置关系,建立了掘锚机与机载钻机发生干涉时的数学模型,并推导出掘锚机与机载钻机发生干涉时的最大转角计算公式。以掘锚机和机载钻机发生干涉时的最大转角为指标,研究了掘锚机与机载钻机各个尺寸参数对机载钻机各个方向最大转角的影响。结果表明:① 掘锚机龙骨倾角越大,机载钻机的俯仰调节角度越大,通过调节掘锚机龙骨能有效改变探水钻机工作时仰角的调节范围。② 龙骨高度的变化对俯仰角的影响均很小,龙骨高度的变化不会影响俯角的变动,而对仰角的影响较大,且呈正比关系;龙骨连接绞耳到龙骨尾部长度的增大使俯仰角均增大,但对仰角的影响效果不明显。若要改动仰角,可优先考虑改变龙骨高度;若要改动俯角,可优先考虑改变龙骨连接绞耳到龙骨尾部长度。③ 当掘锚机龙骨护板间距越大,机载钻机的最大水平转角度越大,当增大到一定程度时,最大水平转角度不再受掘锚机龙骨护板间距增大的影响;当掘锚机龙骨护板间距大于某一值时,掘锚机支撑油缸中心距越大,机载钻机的最大水平转角度越大;掘锚机龙骨护板间距对机载钻机最大水平转角度的影响较掘锚机支撑油缸中心距大。 ④ 当机载钻机钻头后端宽度较小时,不影响最大水平转角;当机载钻机钻头后端宽度增大到某一值时,机载钻机钻头后端宽度越大,最大水平转角越小;当机载钻机钻头后端宽度小于某一值时,机载钻机钻头部分前端宽度越大,最大水平转角越小。实例验证结果表明:增大龙骨倾角、龙骨连接螺栓高度、龙骨高度、龙骨连接绞耳到龙骨尾部长度,并减小机载钻机钻头上缘与机载钻机框架连接绞耳的高度差、龙骨上护板长度,机载钻机的最大俯仰角得到了有效增加。
    Abstract: The deployment of the front drilling rig requires a significant amount of time before and after water exploration and drainage operations. Loading advanced drilling equipment on the anchor excavator can reduce equipment deployment time and improve drilling efficiency. At present, research on anchor excavator units that integrate excavation, anchoring, and exploration mostly focuses on the structural design of equipment and the design of hydraulic control systems. There is relatively little research on the interference features between different structures. The paper analyzes the interference situation during the attitude adjustment process of the airborne drilling rig. A mathematical model for the interference between the anchor excavator and the airborne drilling rig is established based on the geometric position relationship during the attitude adjustment. The formula for calculating the maximum rotation angle is derived when the anchor excavator interferes with the airborne drilling rig. The maximum angle of interference between the anchor excavator and the airborne drilling rig is taken as the indicator. The influence of various size parameters of the anchor excavator and airborne drilling rig on the maximum angle of the airborne drilling rig in various directions is studied. The results show the following points. ① The larger the inclination angle of the anchor excavator keel, the greater the pitch adjustment angle of the airborne drilling rig. By adjusting the inclination angle of anchor excavator keel, the adjustment range of the elevation angle during the operation of the water exploration drilling rig can be effectively changed. ② The variation of the keel height has little effect on the pitch angle. The variation of the keel height does not affect the variation of the pitch angle, but has a greater impact on the pitch angle, which is proportional. The increase in the length of the keel connecting the twisted ear to the tail of the keel increases the pitch angle, but the effect on the pitch angle is not significant. To change the elevation angle, the value of the keel height can be changed firstly. To change the depression angle, the value of the length of the keel connecting the hinge to the tail of the keel can be changed firstly. ③ When the spacing between the anchor excavator keel protection plates is larger, the maximum horizontal rotation angle of the airborne drilling rig is larger. When it increases to a certain extent, the maximum horizontal rotation angle is no longer affected by the increase in spacing between the anchor excavator keel protection plates. When the distance between the keel protection plates of the anchor excavator is greater than a certain value, the larger the center distance of the support oil cylinder of the anchor excavator, the greater the maximum horizontal rotation angle of the airborne drilling rig. The influence of the spacing between the keel protection plates of the anchor excavator on the maximum horizontal rotation angle of the airborne drilling rig is greater than the center distance of the support oil cylinder of the anchor excavator. ④ When the width of the rear end of the airborne drilling bit is small, it does not affect the maximum horizontal angle. When the width of the rear end of the airborne drilling bit increases to a certain value, the larger the width of the rear end of the airborne drilling bit, the smaller the maximum horizontal angle. When the width of the rear end of the airborne drilling bit is less than a certain value, the larger the width of the front end of the airborne drilling bit, the smaller the maximum horizontal angle. The example verification results show that increasing the inclination angle of the keel, the height of the keel connecting bolts, the height of the keel, and the length of the keel connecting ear to the tail of the keel, while reducing the height difference between the upper edge of the drill bit and the connecting ear of the drill frame, and the length of the keel upper protective plate, effectively increases the maximum pitch angle of the airborne drilling rig.
  • 图  1   机载钻机在掘锚机上的安装位置及设备结构

    Figure  1.   The installation position of the airborne drilling rig on the anchor excavator and the structure of the equipment

    图  2   机载钻机工做流程

    Figure  2.   Drilling rig work flow

    图  3   钻机与掘锚机的干涉

    Figure  3.   Interference between drilling rig and the anchor excavator

    图  4   不同龙骨倾角对干涉特性的影响

    Figure  4.   Influence of different keel inclination angles on interference features

    图  5   h1h2L1对俯仰角的影响

    Figure  5.   Effects of h1, h2 and L1 on pitch angle

    图  6   CD横坐标对仰角的影响

    Figure  6.   The effect of C and D on elevation

    图  7   BJ1BJ2同步变化对θ的影响

    Figure  7.   The influence of synchronous changes between BJ1 and BJ2 on θ

    图  8   BZ1BZ2均变化对θ的影响

    Figure  8.   The influence of change of BZ1 and BZ2 on θ

    表  1   机载钻机俯仰调整时与掘锚机干涉的具体描述

    Table  1   Specific description of interference with the anchor excavator during pitch adjustment of airborne drilling rig

    调整方向干涉判别转动角度
    逆时针C与直线F1F2碰撞D与直线F1F2碰撞F1与直线CD碰撞F2与直线CD碰撞依据注释确定
    以点A为圆心,点A到点C的距离为半径作圆,交直线F1F2于点m,连接Am,∠CAm即为该点与龙骨碰撞时的最大转角β1

    注:仅当xmxF2h3h2时,存在此类碰撞
    以点A为圆心,点A到点D的距离为半径作圆,交直线F1F2于点n,连接An,∠DAn即为该点与龙骨碰撞时的最大转角β2

    注:仅当xnxF1h3h2时存在此类碰撞
    以点A为圆心,点A到点F1的距离为半径作圆,交直线CD于点u,∠F1Au即为该点与龙骨碰撞时的最大转角β3

    注:仅当xuxDh3h2时存在此类碰撞
    以点A为圆心,点A到点F2的距离为半径作圆,交直线CD于点v,∠F2Av即为该点与龙骨碰撞时的最大转角β4

    注:仅当xvxCh3h2时存在此类碰撞
    顺时针直线BE与点G 碰撞γ
    以点A为圆心,点A到直线BE的垂直距离为半径作圆A,过点G作圆A的下切线,直线BE与该切线的夹角为掘锚机的最大俯角
    下载: 导出CSV

    表  2   机载钻机水平调整时与掘锚机干涉的具体描述

    Table  2   Specific description of interference with anchor excavator during pitch adjustment of airborne drilling rig

    干涉判别 最大水平转角θ
    直线MK与圆J的碰撞 I与钻机龙骨护板碰撞 min(θ1θ2
    以点H为圆心,BZ2/2为半径作圆H,再作圆H与圆J的公切线,该切线与直线MK的夹角θ1即为钻机前端与掘锚机支撑发生碰撞时的最大转角 以点H为圆心,HI为半径作圆,交龙骨护板于点k
    IHk即为该点与龙骨护板碰撞时的最大转角θ2
    下载: 导出CSV

    表  3   基本尺寸取值区间

    Table  3   Value range of basic size

    参数 取值区间/mm 参数 取值区间/mm
    h0 (310,350) h1 (230,270)
    h2 (120,160) h3 (−100,350)
    h4 (480,520) L2 (6 000,6 500)
    L1 (2 100,2500) L4 (7 500,8 000)
    L3 (2 000,2400) l1 (1 600,2 100)
    l0 (1 500,2000) BZ1 (500,700)
    l2 (500,800) BJ1 (800,1 200)
    BZ2 (250,350) S0 (4 000,4 500)
    BJ2 (1 400,1 500) R2 (55,75)
    S (5 500,6 500)
    下载: 导出CSV

    表  4   优化前后的尺寸

    Table  4   Dimensions before and after optimization

    参数 优化前 优化后
    h0/m 320 320
    h1/m 250 310
    h2/m 140 190
    h3/m 300 220
    h4/m 500 500
    L1/m 2 300 2 600
    L2/m 6 300 6 300
    L3/m 2 185 1 600
    L4/m 7 830 7 830
    l0/m 1 740 1 740
    l1/m 1 890 1 890
    l2/m 670 670
    α/(°) 11 16
    S/m 5 775 5 775
    BZ1/m 500 500
    BZ2/m 280 280
    R2/m 65 65
    BJ1/m 1 200 1 200
    BJ2/m 1 460 1 460
    下载: 导出CSV
  • [1] 李国超. 煤矿瓦斯地质的规律探讨[J]. 中国新技术新产品,2018(1):126-127. DOI: 10.3969/j.issn.1673-9957.2018.01.073

    LI Guochao. Discussion on the law of coal mine gas geology[J]. New Technology & New Products of China,2018(1):126-127. DOI: 10.3969/j.issn.1673-9957.2018.01.073

    [2] 武强,赵苏启,董书宁,等. 《煤矿安全规程》(防治水部分)修改技术要点剖析[J]. 中国煤炭地质,2012,24(7):34-37,47. DOI: 10.3969/j.issn.1674-1803.2012.07.08

    WU Qiang,ZHAO Suqi,DONG Shuning,et al. Dissection of main technical points in "coal mine safety regulations" (water control part) modification[J]. Coal Geology of China,2012,24(7):34-37,47. DOI: 10.3969/j.issn.1674-1803.2012.07.08

    [3] 张强. 新型探放水钻机的应用研究[J]. 机械管理开发,2020,35(8):103-104.

    ZHANG Qiang. Application of new drilling and discharge drilling rig[J]. Mechanical Management and Development,2020,35(8):103-104.

    [4] 阚志涛,邵俊杰,李旺年,等. 双臂窄体分体式履带钻机研制[J]. 煤炭工程,2021,53(10):171-174.

    KAN Zhitao,SHAO Junjie,LI Wangnian,et al. Development of narrow-body split crawler drilling rig with twin boom[J]. Coal Engineering,2021,53(10):171-174.

    [5] 阚志涛,孙道明,魏军贤,等. 双臂钻机在掘进工做面探放水钻孔施工中的应用[J]. 煤炭工程,2021,53(11):57-60.

    KAN Zhitao,SUN Daoming,WEI Junxian,et al. Application of twin boom rig in water exploration and discharge drilling of heading face[J]. Coal Engineering,2021,53(11):57-60.

    [6] 王伟男. 煤矿探放水钻孔倾角定位的误差分析[J]. 煤炭科技,2019,40(4):37-39. DOI: 10.3969/j.issn.1008-3731.2019.04.012

    WANG Weinan. Error analysis of dip angle location of water exploration and drainage boreholes in coal mine[J]. Coal Science & Technology Magazine,2019,40(4):37-39. DOI: 10.3969/j.issn.1008-3731.2019.04.012

    [7] 孟祥辉. 煤矿钻探用钻杆疲劳寿命预测研究[J]. 煤炭科学技术,2020,48(6):148-153.

    MENG Xianghui. Study on fatigue life prediction of drill pipe for mine drilling[J]. Coal Science and Technology,2020,48(6):148-153.

    [8] 刘保金,刘梦杰,吴琰杰,等. 新型钻孔防喷装置[J]. 煤矿机械,2012,33(12):143-144.

    LIU Baojin,LIU Mengjie,WU Yanjie,et al. Preparation and application of new borehole blowout preventer[J]. Coal Mine Machinery,2012,33(12):143-144.

    [9] 邬迪. 煤矿井下钻机调角装置设计[J]. 煤矿机械,2020,41(9):111-113.

    WU Di. Design of angle adjusting device for drilling rig in underground coal mine[J]. Coal Mine Machinery,2020,41(9):111-113.

    [10] 李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1-6,12.

    LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in the research on drilling technology and equipment in coal mining areas of China[J]. Coal Geology & Exploration,2019,47(2):1-6,12.

    [11] 李晓明,韩健,姚亚峰. 煤矿用窄体小型履带式定向钻机[J]. 煤矿安全,2020,51(11):142-145.

    LI Xiaoming,HAN Jian,YAO Yafeng. Narrow-body directional crawler drilling rig used in coal mine[J]. Safety in Coal Mines,2020,51(11):142-145.

    [12] 毛君,孟辉,陈洪月,等. 掘进机机载锚杆钻机运动学分析与轨迹仿真[J]. 机械设计,2016,33(4):42-47.

    MAO Jun,MENG Hui,CHEN Hongyue,et al. Kinematics analysis and track simulation of jumbolter mounted on roadheader[J]. Journal of Machine Design,2016,33(4):42-47.

    [13] 程伟. 煤矿掘进机机载锚杆钻机动力学特性分析[J]. 机械管理开发,2022,37(5):126-127,135.

    CHEGN Wei. Analysis of the kinetic characteristics of coal mine boring machine on-board anchor rod drilling rig[J]. Mechanical Management and Development,2022,37(5):126-127,135.

    [14] 吴晋军. 掘进机机载钻机液压控制系统的设计[J]. 煤炭技术,2021,40(10):164-165.

    WU Jinjun. Design of hydraulic control system for roadheader airborne drilling rig[J]. Coal Technology,2021,40(10):164-165.

    [15] 朱锋. 机载锚杆钻机电液控制系统的研制[J]. 煤矿机械,2023,44(10):48-51.

    ZHU Feng. Development of electro-hydraulic control system for on-board bolt drilling rig[J]. Coal Mine Machinery,2023,44(10):48-51.

    [16] 李霞. TBM机载锚杆钻机优化设计及仿真分析[D]. 成都:西南交通大学,2020.

    LI Xia. Optimization design and simulation analysis of TBM airborne bolt drill[D]. Chengdu:Southwest Jiaotong University,2020.

    [17] 李旺年. 机载锚杆钻机钻架有限元模态及谐响应分析[J]. 煤矿机械,2021,42(5):92-94.

    LI Wangnian. Finite element modal and harmonic response analysis of drilling frame of mounted jumbolter[J]. Coal Mine Machinery,2021,42(5):92-94.

    [18] 王帅. 掘探一体化技术研究[J]. 煤矿机械,2018,39(9):28-30.

    WANG Shuai. Research on integrated mining and exploration technology[J]. Coal Mine Machinery,2018,39(9):28-30.

    [19] 王帅. EBZ160T型掘探一体机的设计[J]. 煤矿机械,2019,40(12):110-112.

    WANG Shuai. Design of EBZ160T type digging and exploration machine[J]. Coal Mine Machinery,2019,40(12):110-112.

    [20] 朱善建. EBZ220T型掘探一体机的设计与应用实践[J]. 山东煤炭科技,2022,40(4):129-131. DOI: 10.3969/j.issn.1005-2801.2022.04.044

    ZHU Shanjian. Design and application of the EBZ220T type integrated excavation and exploration machine[J]. Shandong Coal Science and Technology,2022,40(4):129-131. DOI: 10.3969/j.issn.1005-2801.2022.04.044

    [21] 池中锋. 矿用EBZ160T型掘探一体机的设计研究[J]. 机械管理开发,2020,35(11):16-17,20.

    CHI Zhongfeng. Design and research of EBZ160T mining and exploration machine[J]. Mechanical Management and Development,2020,35(11):16-17,20.

    [22] 岳晓虎. 基于力学分析的机载式前探钻机控制研究[J]. 煤炭技术,2022,41(6):181-184.

    YUE Xiaohu. Research on control of airborne forward drilling rig based on mechanical analysis[J]. Coal Technology,2022,41(6):181-184.

图(8)  /  表(4)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  56
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2024-01-09
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-01-30

目录

    Corresponding author: ZOU Kang, zk451056@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回