留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进型光纤压力传感器设计

杨永亮 张羽 李雪佳 于振 关丙火 吴则功

杨永亮,张羽,李雪佳,等. 一种改进型光纤压力传感器设计[J]. 工矿自动化,2023,49(12):12-17.  doi: 10.13272/j.issn.1671-251x.2023050093
引用本文: 杨永亮,张羽,李雪佳,等. 一种改进型光纤压力传感器设计[J]. 工矿自动化,2023,49(12):12-17.  doi: 10.13272/j.issn.1671-251x.2023050093
YANG Yongliang, ZHANG Yu, LI Xuejia, et al. Design of an improved fiber optic pressure sensor[J]. Journal of Mine Automation,2023,49(12):12-17.  doi: 10.13272/j.issn.1671-251x.2023050093
Citation: YANG Yongliang, ZHANG Yu, LI Xuejia, et al. Design of an improved fiber optic pressure sensor[J]. Journal of Mine Automation,2023,49(12):12-17.  doi: 10.13272/j.issn.1671-251x.2023050093

一种改进型光纤压力传感器设计

doi: 10.13272/j.issn.1671-251x.2023050093
基金项目: 国家能源集团科技创新项目(GJNY-21-26-03)。
详细信息
    作者简介:

    杨永亮(1982— ),男,河北石家庄人,工程师,硕士,现主要从事煤矿采掘安全技术研究工作,E-mail:yangyongliang_01@163.com

  • 中图分类号: TD326.2

Design of an improved fiber optic pressure sensor

  • 摘要:

    针对现有光纤压力传感器压力监测范围小、灵敏度低、成本高的问题,设计了一种改进型光纤压力传感器。在悬臂梁粘贴一支应变光纤光栅,悬空一支温度光纤光栅(使其不受应力)。悬臂梁下方的限位罩将弹簧、波纹管压罩、波纹管罩于其内部,限位罩内侧上平面与弹簧上平面接触,弹簧下平面与波纹管压罩接触。当外界压力通过波纹管底部的管道到达波纹管时,高压使其产生轴向的形变,进而压缩弹簧,最终弹簧发生形变,将力传至悬臂梁,改变应变光纤光栅的受力情况。在单层波纹管增加了劲度系数更大的弹簧,以限制外界产生压力时单层波纹管发生形变,使波纹管与弹簧共同传递压力到悬臂梁。实验结果表明:改进后传感器的压力监测量程为0~5 MPa,相比改进前提升5倍,传感器的灵敏度为0.379 98 nm/MPa,测量误差在0.02 MPa之内。将改进后的压力传感器应用于某井下输水管道进行验证,结果表明:与高精度电子压力计测量结果相比,该传感器的压力解调误差在0.02 MPa之内。

     

  • 图  1  光纤压力传感器内部结构

    Figure  1.  Internal structure of the optical fiber pressure sensor

    图  2  温度实验

    Figure  2.  Temperature experiment

    图  3  温度测试结果

    Figure  3.  Result of temperature test

    图  4  压力测试装置

    Figure  4.  Pressure test device

    图  5  改进前传感器波长与压力曲线

    Figure  5.  Sensor wavelength and pressure curve before improvement

    图  6  改进后传感器波长与压力曲线

    Figure  6.  Sensor wavelength and pressure curve after improvement

    图  7  传感器实物

    Figure  7.  Sensor object

    图  8  传感器水压监测施工

    Figure  8.  Sensor water pressure monitoring and construction

    图  9  光纤压力传感器运行采样点

    Figure  9.  Fiber optic pressure sensors run sampling points

    表  1  实验数据

    Table  1.   The experimental data

    压力/MPa应变波长/nm温度/℃解调值/MPa误差/MPa
    01 550.1211 560.67500
    0.51 550.3171 560.6750.516−0.016
    11 550.5041 560.6751.008−0.008
    1.51 550.6871 560.6751.4900.010
    21 550.8861 560.6752.013−0.013
    2.51 551.0691 560.6752.4950.005
    31 551.2641 560.6763.004−0.004
    3.51 551.4491 560.6763.4910.009
    41 551.6421 560.6763.9990.001
    4.51 551.8311 560.6764.4960.004
    51 552.0271 560.6765.012−0.012
    下载: 导出CSV
  • [1] 赵林,王纪强,侯墨语. 煤矿管道泄漏监测系统设计[J]. 工矿自动化,2016,42(10):12-15. doi: 10.13272/j.issn.1671-251x.2016.10.003

    ZHAO Lin,WANG Jiqiang,HOU Moyu. Design of pipeline leakage monitoring system for coal mine[J]. Industry and Mine Automation,2016,42(10):12-15. doi: 10.13272/j.issn.1671-251x.2016.10.003
    [2] KLAR A,NISSIM O,ELKAYAM I. A hardening load transfer function for rock bolts and its calibration using dittributed fiber optic sensing[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(11):2816-2830. doi: 10.1016/j.jrmge.2022.12.027
    [3] 柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.

    CHAI Jing,LIU Hongrui,ZHANG Dingding,et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.
    [4] WANG Jiqiang,ZHAO Lin,LIU Tongyu, et al. Novel negative pressure wave-based pipeline leak detection system using fiber bragg grating-based pressure sensors[J]. Journal of Lightwave Technology,2017,35(16):3366-3373. doi: 10.1109/JLT.2016.2615468
    [5] 潘越,宋佳佳,王智冲,等. 变截面悬臂梁式光纤布拉格光栅压力传感器设计研究[J]. 激光与光电子学进展,2022,59(1):150-159.

    PAN Yue,SONG Jiajia,WANG Zhichong,et al. Design and research on variable cross-section cantilever fiber bragg grating pressure sensor[J]. Laser & Optoelectronics Progress,2022,59(1):150-159.
    [6] 李舜华,聂泳忠,李腾跃,等. 片上温漂补偿的压阻式压力芯片的设计与制造[J]. 传感技术学报,2022,35(4):474-479. doi: 10.3969/j.issn.1004-1699.2022.04.008

    LI Shunhua,NIE Yongzhong,LI Tengyue,et al. Design and fabrication of piezoresistive pressure sensor chip integrated with on-chip temperature drift compensation[J]. Chinese Journal of Sensors and Actuators,2022,35(4):474-479. doi: 10.3969/j.issn.1004-1699.2022.04.008
    [7] 吴佐飞,齐虹,张岩,等. SOI压力芯片敏感电阻条刻蚀研究[J]. 传感器与微系统,2022,41(3):66-67,75.

    WU Zuofei,QI Hong,ZHANG Yan,et al. Sensitive resistance bar etching research of pressure-sensitive chip based on SOI[J]. Transducer and Microsystem Technologies,2022,41(3):66-67,75.
    [8] 李辉,朱改博. 基于Verilog HDL的管道压力自测装置系统设计[J]. 电工技术,2018(12):123-125,127. doi: 10.3969/j.issn.1002-1388.2018.12.050

    LI Hui,ZHU Gaibo. Design of automatic detection device system for pipeline pressure based on Verilog HDL[J]. Electric Engineering,2018(12):123-125,127. doi: 10.3969/j.issn.1002-1388.2018.12.050
    [9] 苑立波,童维军,江山,等. 我国光纤传感技术发展路线图[J]. 光学学报,2022,42(1):9-42.

    YUAN Libo,TONG Weijun,JIANG Shan,et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica,2022,42(1):9-42.
    [10] 梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826-2833. doi: 10.13225/j.cnki.jccs.2017.0364

    LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826-2833. doi: 10.13225/j.cnki.jccs.2017.0364
    [11] 梁磊,冯坤,朱振华,等. 基于L型悬臂梁的膜片式FBG压力传感器[J]. 光电子·激光,2018,29(9):938-943. doi: 10.16136/j.joel.2018.09.0004

    LIANG Lei,FENG Kun,ZHU Zhenhua,et al. A diaphragm FBG pressure sensor based on L-shaped cantilever structure[J]. Journal of Optoelectronics·Laser,2018,29(9):938-943. doi: 10.16136/j.joel.2018.09.0004
    [12] CHEN Ningning,FANG Xinqiu,LIANG Minfu,et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and Adaboost algorithm[J]. Sustainability,2023,15(3):2239-2239. doi: 10.3390/su15032239
    [13] 杨耀忠,段鸿杰,牟菁. 基于波纹管杠杆组合结构的光纤光栅压力传感器设计[J]. 山东科学,2019,32(2):42-46. doi: 10.3976/j.issn.1002-4026.2019.02.007

    YANG Yaozhong,DUAN Hongjie,MOU Jing. Design of fiber Bragg grating pressure sensor based on bellows and lever composite structure[J]. Shandong Science,2019,32(2):42-46. doi: 10.3976/j.issn.1002-4026.2019.02.007
    [14] 赵林,姜龙,李连庆. 一种组合结构光纤光栅压力传感器[J]. 压电与声光,2017,39(1):60-62,66. doi: 10.11977/j.issn.1004-2474.2017.01.015

    ZHAO Lin,JIANG Long,LI Lianqing. An optical fiber grating pressure sensor with composition structure[J]. Piezoelectrics & Acoustooptics,2017,39(1):60-62,66. doi: 10.11977/j.issn.1004-2474.2017.01.015
    [15] 张超,程仁辉,黄晓昇,等. 基于光纤光栅的本煤层瓦斯钻孔塌孔表征实验研究[J/OL]. 煤炭科学技术:1-10[2023-02-28]. https://doi.org/10.13199/j.cnki.cst.2023-0071.

    ZHANG Chao,CHENG Renhui,HUANG Xiaosheng,et al. Experimental study on hole collapse characterization of gas drainage holes in this coal seam based on fiber bragg grating[J/OL]. Coal Science and Technology:1-10[2023-02-28].https://doi.org/10.13199/j.cnki.cst.2023-0071.
    [16] 李振,王纪强,赵林,等. 基于差分结构的光纤光栅应变传感器温度补偿[J]. 山东科学,2017,30(5):50-54.

    LI Zhen,WANG Jiqiang,ZHAO Lin,et al. Temperature compensation of fiber Bragg grating strain sensor based on differential structure[J]. Shandong Science,2017,30(5):50-54.
    [17] 吴则功,曹鲁,宁雅农,等. 一种基于光纤光栅的顶板离层传感器[J/OL]. 激光与光电子学进展:1-11[2023-02-28]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230104.1235.013.html.

    WU Zegong,CAO Lu,NING Yanong,et al. A roof separation sensor based on fiber bragg grating[J/OL]. Laser & Optoelectronics Progress:1-11[2023-02-28]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230104.1235.013.html.
    [18] 徐飞龙. 煤矿机电设备监测中光纤传感器的应用[J]. 煤炭与化工,2021,44(10):101-103,106.

    XU Feilong. Application analysis of optical fiber sensor in coal mine electromechanical equipment monitoring[J]. Coal and Chemical Industry,2021,44(10):101-103,106.
    [19] 王则力,王淑玉,丁镇军,等. 光纤传感器对合金结构瞬态高温应变测量的适用性研究[J]. 航天器环境工程,2023,40(1):43-48.

    WANG Zeli,WANG Shuyu,DING Zhenjun,et al. Applicability study on optical fiber sensor for transient HT strain measurement of alloy structures[J]. Spacecraft Environment Engineering,2023,40(1):43-48.
    [20] 马崇玺. 基于光纤传感器地下隧洞工程结构应变监测[J]. 水利技术监督,2022(7):34-37.

    MA Chongxi. Monitoring the strain of geotechnical structure in underground tunnel engineering with optical fiber sensor[J]. Technical Supervision in Water Resources,2022(7):34-37.
    [21] 陈同彦,蒋习民. 海底管道分布式光纤传感器安装工艺研究[J]. 中国石油大学胜利学院学报,2020,34(4):27-31.

    CHEN Tongyan,JIANG Ximin. Research on installation technology of distributed fiber optic sensor in submarine pipeline[J]. Journal of Shengli College China University of Petroleum,2020,34(4):27-31.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  62
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-12-03
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回