Risk assessment of water inrush from coal seam floor based on comprehensive weighting
-
摘要: 针对现有煤层底板突水危险性评价模型针对含复杂地质构造工作面泛化能力不强且准确性较低的问题,提出一种基于层次分析法(AHP)和改进熵权法(IEW)综合赋权的煤层底板突水危险性评价模型。基于单指标未确知测度,采用AHP−IEW综合赋权法给出影响煤层底板突水各评价指标的综合权重;建立煤层底板突水危险性综合评价模型,运用该模型计算各评价指标的未确知测度值,再根据置信度识别准则进行等级判定,得出评价结果。以盘道煤业有限公司1305工作面为研究对象验证该模型的可行性:① 根据该煤矿的实际情况,选取影响底板突水风险的开采深度、煤层厚度、煤层倾角、含水层水压、有效隔水层厚度、底板脆性岩厚度、断层分形维数、底板完整性作为评价指标,并建立了底板突水危险性分级标准;② 构建单指标测度函数,得到各评价指标的测度值;③ 采用AHP−IEW综合赋权法得到各评价指标的综合权重;④ 结合综合权重和评价指标的未确知测度矩阵确定综合测度评价向量;⑤ 根据综合测度评价向量对该煤矿研究区域内的调查点进行危险等级划分,并与现场调查结果进行对比分析。验证结果表明:与IEW评价结果相比,基于AHP−IEW综合赋权的煤层底板突水危险性评价模型的预测结果更准确,评价结果与工作面开采过程中的实际调查情况相符。Abstract: The existing risk assessment model of water inrush from coal seam floor has the problems of weak generalization capability and low accuracy for the working face with complex geological structures. In order to solve the above problems, a risk assessment model of water inrush from coal seam floor based on comprehensive weighting by analytic hierarchy process (AHP) and improved entropy weight method (IEW) is proposed. Based on the unascertained measure of single index, the comprehensive weight of each assessment index affecting water inrush from coal seam floor is given by the AHP-IEW comprehensive weighting method. A comprehensive risk assessment model of water inrush from coal seam floor is established. The unascertained measure value of each assessment index is calculated by using the model. Then according to the recognition criteria of confidence, the grade is determined and the assessment result is obtained. The feasibility of the model is verified by taking 1305 working face of Pandao Coal Industry Co., Ltd. as the research object. ① According to the actual situation of the coal mine, the mining depth, coal seam thickness, coal seam dip angle, aquifer water pressure, effective water barrier thickness, floor brittle rock thickness, fault fractal dimension and floor integrity that affect the floor water inrush risk are selected as the assessment indexes. The graded standard of floor water inrush risk is established. ② The single index measure functions are constructed to obtain the measure value of each assessment index. ③ The comprehensive weight of each assessment index is obtained by AHP-IEW comprehensive weighting method. ④ The comprehensive measure assessment vector is determined by combining the comprehensive weight and the unascertained measure matrix of the assessment index. ⑤ According to the comprehensive measure assessment vector, the investigation points in the study area of the coal mine are classified into risk grades. The results are compared with the field investigation results. The verification results show that compared with IEW assessment results, the prediction accuracy of risk assessment model of water inrush from coal seam floor based on AHP-IEW comprehensive weighting is higher. The assessment results are consistent with the actual investigation situation in the mining process of the working face.
-
-
表 1 底板突水风险评价指标分级标准
Table 1 Graded standard of risk assessment indexes of floor water inrush
评价指标 评价指标等级 Ⅰ(C1) Ⅱ(C2) Ⅲ(C3) Ⅳ(C4) Ⅴ(C5) X1/m <300 300~450 450~600 600~800 >800 X2/m <1.5 1.5~3 3~4.5 4.5~6 >6 X3/(°) <5 5~10 10~20 20~30 >30 X4/MPa <1 1~2 2~3 3~4 >4 X5/m >95 75~95 55~75 35~55 <35 X6/m >30 25~30 20~25 15~20 <15 X7 <0.3 0.3~0.5 0.5~0.7 0.7~0.9 >0.9 X8 0.9~1 0.75~0.9 0.5~0.75 0.2~0.5 0~0.2 表 2 研究区工作面影响因素定量结果
Table 2 Quantitative results of influencing factors of working face in study area
调查点编号 评价指标 X1/m X2/m X3/(°) X4/MPa X5/m X6/m X7 X8 D3−1 520.65 6.2 7.0 3.63 111.52 23.04 0.824 6 0.70 D3−2 499.13 5.9 9.3 2.74 117.55 22.20 0.720 3 0.54 D3−3 534.72 5.4 4.3 3.40 94.62 23.21 0.864 2 0.85 D3−4 528.45 6.1 6.5 3.56 108.82 23.86 0.598 4 0.60 D3−5 483.56 5.6 8.5 2.38 102.83 23.30 0.987 4 0.79 D3−6 456.72 5.7 8.0 3.06 93.62 23.38 0.563 5 0.50 D3−7 502.43 5.3 4.6 2.08 108.16 22.32 0.863 5 0.79 表 3 工作面底板突水风险评价指标权重
Table 3 Weight value of risk assessment indexes of floor water inrush of working face
评价指标 $ {w'_j} $ $ {w''_j} $ $ {w_j} $ X1 0.038 6 0.117 1 0.077 9 X2 0.025 0 0.127 1 0.076 1 X3 0.019 0 0.127 2 0.073 1 X4 0.262 9 0.121 8 0.192 4 X5 0.155 8 0.128 6 0.142 2 X6 0.104 7 0.125 1 0.114 9 X7 0.253 5 0.126 1 0.189 9 X8 0.140 4 0.126 9 0.133 7 表 4 底板突水风险评价结果
Table 4 Risk assessment results of floor water inrush
调查点编号 综合未确知测度 AHP−IEW评价结果 现场调查结果(是否出水) IEW评价结果 Ⅰ(C1) Ⅱ(C2) Ⅲ(C3) Ⅳ(C4) Ⅴ(C5) D3−1 0.156 8 0.123 3 0.261 7 0.285 6 0.172 8 Ⅳ 是 Ⅲ D3−2 0.142 2 0.069 0 0.504 3 0.218 8 0.066 0 Ⅲ 否 Ⅲ D3−3 0.254 5 0.110 9 0.191 4 0.306 3 0.137 1 Ⅳ 是 Ⅲ D3−4 0.171 4 0.075 1 0.283 1 0.371 4 0.099 2 Ⅳ 是 Ⅲ D3−5 0.142 2 0.236 7 0.355 3 0.040 6 0.225 4 Ⅲ 否 Ⅲ D3−6 0.122 6 0.253 8 0.284 7 0.293 4 0.045 7 Ⅲ 否 Ⅲ D3−7 0.215 3 0.202 8 0.311 9 0.144 5 0.125 7 Ⅲ 否 Ⅲ -
[1] 马丹,段宏宇,张吉雄,等. 断层破碎带岩体突水灾害的蠕变−冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报,2021,40(9):1751-1763. MA Dan,DUAN Hongyu,ZHANG Jixiong,et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1751-1763.
[2] 武强,樊振丽,刘守强,等. 基于GIS的信息融合型含水层富水性评价方法−富水性指数法[J]. 煤炭学报,2011,36(7):1124-1128. DOI: 10.13225/j.cnki.jccs.2011.07.002 WU Qiang,FAN Zhenli,LIU Shouqiang,et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS:water-richness index method[J]. Journal of China Coal Society,2011,36(7):1124-1128. DOI: 10.13225/j.cnki.jccs.2011.07.002
[3] 王鑫,郑洁铭,张成行,等. 基于AHP熵值法的煤层底板突水预测评价[J]. 中国煤炭,2018,44(12):126-130. DOI: 10.3969/j.issn.1006-530X.2018.12.028 WANG Xin,ZHENG Jieming,ZHANG Chenghang,et al. Forecast and evaluation of water inrush from coal floor based on AHP entropy method[J]. China Coal,2018,44(12):126-130. DOI: 10.3969/j.issn.1006-530X.2018.12.028
[4] 张文泉,张新,焦钰峰. 基于PCA−GA−LSSVR的工作面涌水量预测[J]. 煤炭技术,2016,35(5):144-147. ZHANG Wenquan,ZHANG Xin,JIAO Yufeng. Prediction of mining face inflow based on PCA-GA-LSSVR[J]. Coal Technology,2016,35(5):144-147.
[5] 张晓亮. 熵权耦合层次分析赋权在煤层底板突水评价中的应用[J]. 煤田地质与勘探,2017,45(3):91-95. DOI: 10.3969/j.issn.1001-1986.2017.03.017 ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration,2017,45(3):91-95. DOI: 10.3969/j.issn.1001-1986.2017.03.017
[6] 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发,2020,40(11):83-88. LIU Weitao,SUN Xi,XU Baichao. Risk evaluation of water inrush from coal seam floor based on GIS and principal component analysis-entropy weight method[J]. Mining Research and Development,2020,40(11):83-88.
[7] 张成行,郑洁铭,张玉卓,等. 基于Surfer的煤层底板突水评价方法及其应用[J]. 矿业安全与环保,2020,47(5):60-64. ZHANG Chenghang,ZHENG Jieming,ZHANG Yuzhuo,et al. Evaluation method of coal seam floor water inrush based on Surfer and its application[J]. Mining Safety & Environmental Protection,2020,47(5):60-64.
[8] 周航,廖昕,陈仕阔,等. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价−以川藏交通廊道桑珠岭隧道为例[J]. 地球科学,2022,47(6):2130-2148. ZHOU Hang,LIAO Xin,CHEN Shikuo,et al. Rockburst risk assessment of deep lying tunnels based on combination weight and unascertained measure theory:a case study of Sangzhuling tunnel on Sichuan-Tibet traffic torridor[J]. Earth Science,2022,47(6):2130-2148.
[9] 苏生瑞,周阳,周泽华,等. 基于EW−AHP和未确知测 度理论的崩塌危险性评价[J]. 工程地质学报,2019,27(3):577-584. SU Shengrui,ZHOU Yang,ZHOU Zehua,et al. Hazard assessment of collapse using EW-AHP and unascertained measure theory[J]. Journal of Engineering Geology,2019,27(3):577-584.
[10] 郑伯坤,尹旭岩,黄腾龙,等. 基于未确知测度理论的三山岛金矿充填工艺方案优选[J]. 矿业研究与开发,2020,40(2):13-18. ZHENG Bokun,YIN Xuyan,HUANG Tenglong,et al. Optimization of filling process scheme for Sanshandao Gold Mine based on unascertained measure theory[J]. Mining Research and Development,2020,40(2):13-18.
[11] SAATY T L,VARGAS L. Estimating technological coefficients by the analytic hierarchy process[J]. Socio-Economic Planning Sciences,1979,13(6):333-336. DOI: 10.1016/0038-0121(79)90015-6
[12] 王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558-565. WANG Xinyi,YAO Mengjie,ZHANG Jianguo,et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining & Safety Engineering,2019,36(3):558-565.
[13] 鲁海峰,孟祥帅,张元,等. 采场底板层状结构关键层隔水性能力学分析[J]. 中国矿业大学学报,2020,49(6):1057-1066. LU Haifeng,MENG Xiangshuai,ZHANG Yuan,et al. Mechanical analysis of water barrier performance of floor layered structure key stratum on coal face[J]. Journal of China University of Mining & Technology,2020,49(6):1057-1066.
[14] 翟强,顾伟红,赵映璎. 基于未确知测度理论的隧道施工瓦斯灾害风险评价[J]. 铁道科学与工程学报,2021,18(3):803-812. ZHAI Qiang,GU Weihong,ZHAO Yingying. Risk assessment of gas disaster in tunnel construction based on unascertained measurement theory[J]. Journal of Railway Science and Engineering,2021,18(3):803-812.
[15] LIU Weitao,HAN Mengke,MENG Xiangxi,et al. Mine water inrush risk assessment evaluation based on the GIS and combination weight-cloud model:a case study[J]. ACS Omega,2021,6(48):32671-32681. DOI: 10.1021/acsomega.1c04357
-
期刊类型引用(30)
1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 . 百度学术
2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 . 百度学术
4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 . 百度学术
5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 . 百度学术
7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 . 百度学术
8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 . 百度学术
10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 . 百度学术
11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 . 百度学术
12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 . 百度学术
13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 . 百度学术
14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 . 百度学术
16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 . 百度学术
17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 . 百度学术
18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 . 百度学术
19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 . 百度学术
20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 . 百度学术
21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 . 百度学术
22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 . 百度学术
23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 . 百度学术
24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 . 百度学术
25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 . 百度学术
26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 . 百度学术
27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 . 百度学术
28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 . 百度学术
29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 . 百度学术
其他类型引用(14)