基于Hadoop生态圈的选煤数据中台设计

赵鑫, 王然风, 付翔

赵鑫, 王然风, 付翔. 基于Hadoop生态圈的选煤数据中台设计[J]. 工矿自动化, 2021, 47(12): 121-127. DOI: 10.13272/j.issn.1671-251x.2021040004
引用本文: 赵鑫, 王然风, 付翔. 基于Hadoop生态圈的选煤数据中台设计[J]. 工矿自动化, 2021, 47(12): 121-127. DOI: 10.13272/j.issn.1671-251x.2021040004
ZHAO Xin, WANG Ranfeng, FU Xiang. Design of coal preparation data center platform based on Hadoop ecosystem[J]. Journal of Mine Automation, 2021, 47(12): 121-127. DOI: 10.13272/j.issn.1671-251x.2021040004
Citation: ZHAO Xin, WANG Ranfeng, FU Xiang. Design of coal preparation data center platform based on Hadoop ecosystem[J]. Journal of Mine Automation, 2021, 47(12): 121-127. DOI: 10.13272/j.issn.1671-251x.2021040004

基于Hadoop生态圈的选煤数据中台设计

基金项目: 

山西省应用基础研究计划重点自然基金项目(201901D111007);山西省关键核心技术和共性技术研发攻关专项项目(2020XXX004)。

详细信息
    作者简介:

    赵鑫(1996-),男,山西太原人,硕士研究生,研究方向为选煤智能化与大数据开发,E-mail:zhaoxin3158@163.com。

  • 中图分类号: TD948

Design of coal preparation data center platform based on Hadoop ecosystem

  • 摘要: 针对现有选煤厂信息管理系统采用的接口不规范,导致数据重复采集,且各系统相互独立,对多源异构数据处理能力弱等问题,基于Hadoop生态圈大数据技术,提出了一种基于Hadoop生态圈的选煤数据中台设计方案。通过主数据管理系统、企业服务总线定义数据标准实现系统集成;设计归一化、相关系数矩阵和噪声异常点检测程序实现数据处理;结合D-S(Dempster-Shafer)证据理论、Hadoop与Hive数据仓库设计多源异构数据融合子系统,实现数据融合;利用Highcharts数据可视化组件实现数据交互式的可视化展示。实际应用结果表明,该数据中台实现了主数据定义标准与系统集成接口规范化,提高了选煤数据处理能力,实现了多源异构选煤数据融合共享、数据实时交互式的可视化展示。
    Abstract: The existing coal preparation plant information management system uses nonstandard interface, which leads to repeated data collection, and each system is independent of each other, and the capability to process multi-source heterogeneous data is weak. In order to solve above problems, based on big data technology of Hadoop ecosystem, a coal preparation data center platform design scheme based on Hadoop ecosystem is proposed. The system integration is realized by defining data standards through master data management system and enterprise service bus. Normalization, correlation coefficient matrix and noise abnormal point detection programs are designed to realize data processing. DS (Dempster-Shafer) evidence theory, Hadoop and Hive data warehouse are combined to design multi-source heterogeneous data fusion subsystem to realize data fusion. Highcharts data visualization components are used to achieve interactive visualization of data. The practical application results show that the data center platform realizes the standardization of master data definition standard and system integration interface, improves the processing capability of coal preparation data, realizes the fusion and sharing of multi-source heterogeneous coal preparation data, and realizes the real-time interactive visualization of data.
  • [1] 刘银志,赵廷钊,毛善君,等.大型煤矿集团管理智能化系统研究[J].工矿自动化,2020,46(12):25-30.

    LIU Yinzhi,ZHAO Tingzhao,MAO Shanjun,et al.Research on intelligent management system of large coal group[J].Industry and Mine Automation,2020,46(12):25-30.

    [2] 董永胜,陈为高,侯佃平,等.智能化选煤厂研究与建议[J].工矿自动化,2021,47(增刊1):26-31.

    DONG Yongsheng,CHEN Weigao,HOU Dianping,et al.Research and suggestions on intelligent coal preparation plant[J].Industry and Mine Automation,2021,47(S1):26-31.

    [3] 王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al.2025 scenarios and development path of intelligent coal mine[J].Journal of China Coal Society,2018,43(2):295-305.

    [4] 疏礼春.智能煤矿数据中台架构及关键技术研究[J].工矿自动化,2021,47(6):40-44.

    SHU Lichun.Research on the architecture and key technologies of intelligent coal mine data middle platform[J].Industry and Mine Automation,2021,47(6):40-44.

    [5] 马小平,代伟.大数据技术在煤炭工业中的研究现状与应用展望[J].工矿自动化,2018,44(1):50-54.

    MA Xiaoping,DAI Wei.Research status and application prospect of big data technology in coal industry[J].Industry and Mine Automation,2018,44(1):50-54.

    [6] 匡亚莉.智能化选煤厂建设的内涵与框架[J].选煤技术,2018(1):85-91.

    KUANG Yali.The intension and framework for the construction of intelligent coal preparation plant[J].Coal Preparation Technology,2018(1):85-91.

    [7] 张磊.信息自动化技术在选煤厂的应用探讨[J].煤炭工程,2018,50(增刊1):125-127.

    ZHANG Lei.Discussion on the application of information automation technology in coal preparation plant[J].Coal Engineering,2018,50(S1):125-127.

    [8] 高晓茜,杨永胜,白龙,等.石圪台选煤厂信息化调度管理[J].洁净煤技术,2019,25(增刊1):161-163.

    GAO Xiaoqian,YANG Yongsheng,BAI Long,et al.Information dispatching management of Shigetai coal preparation plant[J].Clean Coal Technology,2019,25(S1):161-163.

    [9] 孙小路,周春侠,张永志,等.选煤生产过程标准数据平台建设及其关键技术[J].煤炭工程,2021,53(1):38-42.

    SUN Xiaolu,ZHOU Chunxia,ZHANG Yongzhi,et al.Construction of standard data platform for coal preparation process and its key technologies[J].Coal Engineering,2021,53(1):38-42.

    [10] 刘贤康.基于Hadoop生态圈的工业数据平台设计与研究[D].武汉:华中科技大学,2019.

    LIU Xiankang.Design and research of industrial data platform based on Hadoop ecosphere[D].Wuhan:Huazhong University of Science and Technology,2019.

    [11] 杜小勇,卢卫,张峰.大数据管理系统的历史、现状与未来[J].软件学报,2019,30(1):127-141.

    DU Xiaoyong,LU Wei,ZHANG Feng.History,present,and future of big data management systems[J].Journal of Software,2019,30(1):127-141.

    [12] 曹现刚,罗璇,张鑫媛,等.煤矿机电设备运行状态大数据管理平台设计[J].煤炭工程,2020,52(2):22-26.

    CAO Xiangang,LUO Xuan,ZHANG Xinyuan,et al.Design of big data management platform for operation status of coal mine electromechanical equipment[J].Coal Engineering,2020,52(2):22-26.

    [13] 王万丽,孙超,宿国瑞.基于云平台的煤矿安全智能管控信息平台设计[J].煤炭工程,2019,51(6):52-56.

    WANG Wanli,SUN Chao,SU Guorui.Design of coal mine safety intelligent control information platform based on cloud platform[J].Coal Engineering,2019,51(6):52-56.

    [14] 刘纪芹,史开泉.大数据分解-融合及其智能获取[J].计算机科学,2020,47(6):66-73.

    LIU Jiqin,SHI Kaiquan.Big data decomposition-fusion and its intelligent acquisition[J].Computer Science,2020,47(6):66-73.

    [15] 陈金环,王涛,李帅,等.基于改进D-S证据理论的智能安全传感器[J].信息技术与信息化,2021(2):232-235.

    CHEN Jinhuan,WANG Tao,LI Shuai,et al.Intelligent security sensor based on improved D-S evidence theory[J].Information Technology and Information Technology,2021(2):232-235.

  • 期刊类型引用(20)

    1. 刘相通,李曼,沈思怡,曹现刚,刘俊祺. 液压支架关键姿态参数测量系统. 工矿自动化. 2024(04): 41-49 . 本站查看
    2. 文治国. 四柱支撑掩护式液压支架支护状态分析计算. 煤矿机械. 2023(04): 23-26 . 百度学术
    3. 张坤,孙政贤,刘亚,李玉霞,杜明超,马英,魏训涛,徐亚军,王鑫,余铜柱,丁超. 基于信息融合技术的超前液压支架姿态感知方法及实验验证. 煤炭学报. 2023(S1): 345-356 . 百度学术
    4. 权钰涵,张啸,刘冬,罗睿,贺云. 融合激光SLAM实现平衡车智能导航. 电子技术应用. 2023(10): 141-147 . 百度学术
    5. 庞义辉,刘新华,王泓博,姜志刚,关书方,张自发,王伟. 基于千斤顶行程驱动的液压支架支护姿态与高度解析方法. 采矿与安全工程学报. 2023(06): 1231-1242 . 百度学术
    6. 王裕,史艳楠,王毅颖,齐朋磊,王翰秋. 固体充填液压支架全位姿测量及虚拟仿真. 工矿自动化. 2022(07): 81-89 . 本站查看
    7. 卢金强. 矿井液压支架激光定位传感器的应用研究. 机械管理开发. 2022(09): 240-242 . 百度学术
    8. 梁娜娜. 基于灰色理论的液压支架姿态监测方法研究. 煤矿机械. 2021(05): 191-193 . 百度学术
    9. 胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略. 采矿与安全工程学报. 2021(04): 666-677 . 百度学术
    10. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 . 百度学术
    11. 张雪梅. 基于无线传感数据的液压支架三维姿态监测. 山西焦煤科技. 2021(09): 31-35 . 百度学术
    12. 郭春福,占晓祥,张宁,韩智儒. 井下液压支架运行姿态智能感知技术分析. 中国高新科技. 2021(18): 97-98 . 百度学术
    13. 曹贯强,赵文生. 基于MEMS加速度计的高精度倾角传感器研制. 自动化仪表. 2020(03): 25-28+35 . 百度学术
    14. 廉自生,袁祥,高飞,廖瑶瑶,郭永昌,赵瑞豪. 液压支架网络化智能感控方法. 煤炭学报. 2020(06): 2078-2089 . 百度学术
    15. 白晋铭,王然风,付翔. 基于架间行走机器人的液压支架直线度测量方法. 工矿自动化. 2019(01): 45-51 . 本站查看
    16. 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法. 工矿自动化. 2019(03): 56-60 . 本站查看
    17. 王昕,李鹏鹏,沈行良. 基于影像的角度测量系统设计与实现. 智能计算机与应用. 2019(04): 271-273+277 . 百度学术
    18. 马旭东,许春雨,宋建成. 综采工作面液压支架姿态监测系统设计. 煤炭技术. 2019(07): 174-177 . 百度学术
    19. 许金星. 机器视觉的液压支架姿态角度测量系统设计. 煤矿机械. 2019(09): 11-13 . 百度学术
    20. 张德生,任怀伟,何明,卞冀,李提建,马强. 两柱掩护式液压支架内外加载支护对比试验研究. 煤炭科学技术. 2019(11): 135-142 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数:  161
  • HTML全文浏览量:  22
  • PDF下载量:  20
  • 被引次数: 37
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-12-03
  • 刊出日期:  2021-12-19

目录

    /

    返回文章
    返回