基于高阶累积量和DNN模型的井下信号识别方法

王安义, 李立

王安义,李立.基于高阶累积量和DNN模型的井下信号识别方法[J].工矿自动化,2020,46(2):82-87.. DOI: 10.13272/j.issn.1671-251x.2019100064
引用本文: 王安义,李立.基于高阶累积量和DNN模型的井下信号识别方法[J].工矿自动化,2020,46(2):82-87.. DOI: 10.13272/j.issn.1671-251x.2019100064
WANG Anyi, LI Li. Underground signal recognition method based on higher-order cumulants and DNN model[J]. Journal of Mine Automation, 2020, 46(2): 82-87. DOI: 10.13272/j.issn.1671-251x.2019100064
Citation: WANG Anyi, LI Li. Underground signal recognition method based on higher-order cumulants and DNN model[J]. Journal of Mine Automation, 2020, 46(2): 82-87. DOI: 10.13272/j.issn.1671-251x.2019100064

基于高阶累积量和DNN模型的井下信号识别方法

基金项目: 

国家重点产业创新链项目(2019ZDLSF07-06)

国家自然科学基金青年科学基金项目(61801372)

详细信息
  • 中图分类号: TD655

Underground signal recognition method based on higher-order cumulants and DNN model

  • 摘要: 针对矿井复杂异构的无线环境,提出一种基于高阶累积量和DNN模型的井下信号识别方法,实现了井下BPSK,QPSK,8PSK,2FSK,4FSK,8FSK,32QAM,64QAM,OFDM等数字信号的自动调制识别。分析得到9种数字信号的高阶累积量理论值,并通过傅里叶变换提高信号辨识度;分析井下小尺度衰落信道对高阶累积量的影响,推导出经过井下衰落信道后信号的高阶累积量计算表达式,根据高阶累积量理论值构造特征参数并训练DNN模型,实现信号识别。仿真分析结果表明,该方法在矿井Nakagami-m衰落信道下有出色的调制识别性能,信噪比为-5 dB时平均正确识别率为89.2%以上,信噪比为5 dB以上时平均正确识别率为100%。该方法为在特殊复杂环境下的信号识别检测提供了新思路。
    Abstract: In view of complex and heterogeneous wireless environment of mine, an underground signal recognition method based on higher-order cumulants and DNN model was proposed to realize automatic modulation recognition of underground digital signals of BPSK, QPSK, 8PSK, 2FSK, 4FSK, 8FSK, 32QAM, 64QAM, OFDM. Theoretical values of high-order cumulants of the 9 kinds of digital signals were obtained by analysis, and the signal identification was improved by Fourier transform. The influence of underground small-scale fading channels on high-order cumulants were analyzed, high-order cumulants calculation expression of the signal after passing through the underground channel was derived, and signal recognition was realized using characteristic parameters constructed according high-order cumulants to train DNN model. The simulation analysis results show that the method has excellent modulation recognition performance in mine Nakagami-m fading channel, average correct recognition rate is more than 89.2% when the signal-to-noise ratio is -5 dB, and the average correct recognition rate is 100% when the signal-to-noise ratio is 5 dB or more. The method provides a new idea for signal recognition and detection in special and complex environments.
计量
  • 文章访问数:  99
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回