基于图像识别的带式输送机输煤量和跑偏检测方法

韩涛, 黄友锐, 张立志, 徐善永, 许家昌, 鲍士水

韩涛,黄友锐,张立志,等.基于图像识别的带式输送机输煤量和跑偏检测方法[J].工矿自动化,2020,46(4):17-22.. DOI: 10.13272/j.issn.1671-251x.2019080055
引用本文: 韩涛,黄友锐,张立志,等.基于图像识别的带式输送机输煤量和跑偏检测方法[J].工矿自动化,2020,46(4):17-22.. DOI: 10.13272/j.issn.1671-251x.2019080055
HAN Tao, HUANG Yourui, ZHANG Lizhi, XU Shanyong, XU Jiachang, BAO Shishui. Detection method of coal quantity and deviation of belt conveyor based on image recognitio[J]. Journal of Mine Automation, 2020, 46(4): 17-22. DOI: 10.13272/j.issn.1671-251x.2019080055
Citation: HAN Tao, HUANG Yourui, ZHANG Lizhi, XU Shanyong, XU Jiachang, BAO Shishui. Detection method of coal quantity and deviation of belt conveyor based on image recognitio[J]. Journal of Mine Automation, 2020, 46(4): 17-22. DOI: 10.13272/j.issn.1671-251x.2019080055

基于图像识别的带式输送机输煤量和跑偏检测方法

基金项目: 

国家自然科学基金资助项目(61772033)

陕西省教育厅科研计划资助项目(18JK1131)

详细信息
  • 中图分类号: TD634.1

Detection method of coal quantity and deviation of belt conveyor based on image recognitio

  • 摘要: 传统的卷积神经网络(CNN)是单任务网络,为实现带式输送机输煤量和跑偏的同时检测,使用2个卷积神经网络分别对输煤量和跑偏进行检测,导致网络体积大、参数多、计算量大、运行时间长,严重影响检测性能。为降低网络结构的复杂性,提出了一种基于多任务卷积神经网络(MT-CNN)的带式输送机输煤量和跑偏检测方法,可使输煤量检测和跑偏检测这2个任务共享同一个网络底层结构和参数。在VGGNet模型的基础上,增大卷积核和池化核的尺度,减少全连接层通道数量,改变输出层结构,构建了MT-CNN;对采集的输送带图像进行灰度化、中值滤波和提取感兴趣区域等预处理后,获取训练数据集和测试数据集,并对MT-CNN进行训练;使用训练好的MT-CNN对输送带图像进行识别分类,实现输煤量和跑偏的准确、快速检测。实验结果表明,训练后的MT-CNN在测试数据集中检测准确率为97.3%,平均处理每张图像的时间约为23.1 ms。通过现场实际运行验证了该方法的有效性。
    Abstract: Traditional convolutional neural network(CNN) is a single-task network. In order to realize simultaneous detection of coal quantity and deviation of belt conveyor, two CNNs are used to detect coal quantity and deviation respectively, resulting in large network volume, many parameters, large computation and long operation time, which seriously affect detection performance. In order to reduce complexity of network structure, a detection method of coal quantity and deviation of belt conveyor based on multi-task convolutional neural network (MT-CNN) was proposed, which could make two tasks of coal quantity detection and deviation detection to share the same network underlying structure and parameters. On the basis of VGGNet model, MT-CNN is constructed by increasing scale of convolution kernel and pooling kernel, reducing the number of channels in full connection layer, and changing structure of output layer. After preprocessing the acquired conveyor belt images, such as graying, median filtering and extracting region of interest, the training dataset and test dataset are acquired, and the MT-CNN is trained. The trained MT-CNN is used to identify and classify the conveyor belt images, so as to realize accurate and fast detection of coal quantity and deviation. The experimental results show that detection accuracy of the trained MT-CNN in the test dataset is 97.3%, and average processing time of each image is about 23.1 ms. The effectiveness of the method is verified by field operation.
  • 期刊类型引用(9)

    1. 王学文,刘曙光,王雪松,谢嘉成,王彬彬,王振威. AR/VR融合驱动的综采工作面智能监控关键技术研究与试验. 煤炭学报. 2022(02): 969-985 . 百度学术
    2. 赵佰亭,庞猛,贾晓芬. 一种深立井井筒数据采集及分析系统设计. 工矿自动化. 2022(05): 118-122 . 本站查看
    3. 郑建龙. 主通风控制系统的配置及功能实现. 当代化工研究. 2022(16): 113-115 . 百度学术
    4. 常芳芳. 矿井通风技术的应用及管理. 能源与节能. 2022(09): 87-89 . 百度学术
    5. 刘彦武. 基于智能通风的火灾和瓦斯突出灾变管控系统探讨. 山西焦煤科技. 2021(08): 47-52 . 百度学术
    6. 卢丹,张中青,余晓鹏,李朋磊,米传民,许洁. 电网运行风险管控可视化系统架构与功能研究. 南京理工大学学报. 2020(01): 87-93 . 百度学术
    7. 孙卫锋. 矿井主通风控制系统的配置及功能实现. 机械管理开发. 2020(09): 257-259 . 百度学术
    8. 杨景峰. 基于虚拟现实技术的煤矿三维可视化展示系统设计. 陕西煤炭. 2019(04): 127-129+81 . 百度学术
    9. 丁飞,张登银,师晓晔,许斌,刘宁. 基于VR/AR的互动式教学研究与实践. 软件导刊. 2018(12): 213-216 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  131
  • HTML全文浏览量:  20
  • PDF下载量:  38
  • 被引次数: 12
出版历程
  • 刊出日期:  2020-04-19

目录

    /

    返回文章
    返回