Aging indexes analysis of explosion-proof lithium battery based on incremental capacity method
-
摘要: 现有防爆锂电池矿用机车电池管理系统中电池健康状态仅用于预测电池剩余使用寿命,不对电池老化原因进行分析,对电池维护缺乏指导意义。针对该问题,首先分析了导致锂电池老化的内部因素,即锂离子损耗、活性物质溶解、内阻增加;然后基于容量增量法原理,提出了一种防爆锂电池老化指标分析方法,根据锂电池容量增量曲线高度和横向位置分别对锂离子损耗、活性物质溶解、内阻增加导致的锂电池老化进行量化分析,得出了相应的老化指标;最后介绍了电池管理系统中计算锂电池容量增量和确定容量增量曲线峰谷点的方法。采用电池充放电试验分析了充放电次数和充放电倍率对电池老化的影响:防爆锂电池以较小充放电倍率操作时,随着充放电次数增加,锂电池老化主要为锂离子损耗和活性物质溶解导致的老化;增大电池充放电倍率对内阻增加导致的电池老化影响最大。该方法有助于防爆锂电池管理系统更准确地估算电池健康状态,并为电池维护和电池管理系统的参数设定提供依据。Abstract: State of health(SOH) in existing battery management system(BMS) for mine-used locomotive powered by explosion-proof lithium battery is only used to predict remaining service life of the battery, but not for cause analysis of battery aging, which has no guiding significance for battery maintenance. In order to solve the problem, internal factors leading to lithium battery aging were analyzed firstly that were lithium ion loss, dissolution of active substances and increase of internal resistance. Then an aging indexes analysis method of explosion-proof lithium battery was proposed which was based on incremental capacity(IC) method. According to height and transverse position of IC curve of lithium battery, lithium battery aging caused by lithium ion loss, dissolution of active substances and increase of internal resistance were analyzed quantitatively to obtain corresponding aging indexes. Finally, methods of calculating lithium battery IC and determining peak and valley of IC curve in BMS were introduced. The influences of charge and discharge number and charge and discharge ratio on battery aging were analyzed by battery charge and discharge tests The test results show that with increase of charge and discharge number, explosion-proof lithium battery aging is mainly caused by loss of lithium ion and dissolution of active substances when it is operated with a small charge and discharge ratio. Increasing charge and discharge ratio of the battery has the greatest influence on battery aging caused by increase of internal resistance. The method is good for BMS of explosion-proof lithium battery to estimate SOH more correctly and can provide basis for battery maintenance and BMS parameters setting.
-
-
期刊类型引用(12)
1. 张鹏. 煤矿人员精确定位系统数据存储方案设计. 煤矿安全. 2024(08): 227-233 . 百度学术
2. 张翼,于林,卢向明. 煤矿安全监控系统数据加密存储方案设计. 煤矿安全. 2023(10): 196-200 . 百度学术
3. 陈君. 基于B/S结构的异构数据库加密算法仿真. 计算机仿真. 2021(04): 236-239+262 . 百度学术
4. 宋莎. 智慧医院财务报表数据库隐私加密方法研究. 自动化技术与应用. 2021(12): 45-49 . 百度学术
5. 许金. 煤矿安全监控系统数据防篡改研究. 煤矿安全. 2020(02): 116-119 . 百度学术
6. 曾彬. 大数据平台极端敏感信息对称加密方法仿真. 计算机仿真. 2020(10): 321-324 . 百度学术
7. 朱沙沙. 一种煤矿安全监控系统数据加密算法. 计算机应用与软件. 2020(11): 324-327+333 . 百度学术
8. 邹爱琴. 大数据网络用户隐私信息自适应加密系统设计. 自动化与仪器仪表. 2019(05): 28-31+36 . 百度学术
9. 乌兰. 网络主动防御下字符型数据全同态加密仿真. 计算机仿真. 2019(06): 289-292 . 百度学术
10. 张荣刚. 水电气表防拆智能报警系统的研究. 福建师大福清分校学报. 2018(05): 27-30+37 . 百度学术
11. 李生弓. 计算机网络安全中数据加密技术研究. 科技广场. 2017(09): 94-96 . 百度学术
12. 张骐. 神华集团煤矿安全监控系统现状及升级改造. 工矿自动化. 2017(05): 18-21 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 91
- HTML全文浏览量: 21
- PDF下载量: 31
- 被引次数: 15