基于栈式稀疏自编码器的矿用变压器故障诊断

许倩文, 吉兴全, 张玉振, 李军, 于永进

许倩文,吉兴全,张玉振,等.基于栈式稀疏自编码器的矿用变压器故障诊断[J].工矿自动化,2018,44(10):33-37.. DOI: 10.13272/j.issn.1671-251x.2018040092
引用本文: 许倩文,吉兴全,张玉振,等.基于栈式稀疏自编码器的矿用变压器故障诊断[J].工矿自动化,2018,44(10):33-37.. DOI: 10.13272/j.issn.1671-251x.2018040092
XU Qianwen, JI Xingquan, ZHANG Yuzhen, LI Jun, YU Yongjin. Fault diagnosis of mind-used transformer based on stacked sparse auto-encoder[J]. Journal of Mine Automation, 2018, 44(10): 33-37. DOI: 10.13272/j.issn.1671-251x.2018040092
Citation: XU Qianwen, JI Xingquan, ZHANG Yuzhen, LI Jun, YU Yongjin. Fault diagnosis of mind-used transformer based on stacked sparse auto-encoder[J]. Journal of Mine Automation, 2018, 44(10): 33-37. DOI: 10.13272/j.issn.1671-251x.2018040092

基于栈式稀疏自编码器的矿用变压器故障诊断

基金项目: 

山东省高等学校科技计划项目(J17KA074)

详细信息
  • 中图分类号: TD611

Fault diagnosis of mind-used transformer based on stacked sparse auto-encoder

  • 摘要: 鉴于将深度学习应用于变压器故障诊断具有良好的故障诊断效果,提出了一种基于栈式稀疏自编码器的矿用变压器故障诊断方法。通过在自编码器隐含层引入稀疏项限制构成稀疏自编码器,再将多个稀疏自编码器进行堆叠形成栈式稀疏自编码器,并以Softmax分类器作为输出层,建立矿用变压器故障诊断模型;利用大量无标签样本对模型进行无监督预训练,并通过有监督微调优化模型参数。算例分析结果表明,与栈式自编码器相比,栈式稀疏自编码器应用于矿用变压器故障诊断具有更高的准确率。
    Abstract: In view of application of deep learning to transformer fault diagnosis had a good fault diagnosis effect, a fault diagnosis method of mind-used transformer based on stacked sparse auto-encoder was proposed. Sparse auto-encoder is constructed by introducing sparse item constraint in hidden layer of auto-encoder, then the multiple sparse auto-encoders are stacked to form stacked sparse auto-encoder, and Softmax classifier is used as output layer to establish mine-used transformer fault diagnosis model. A large number of unlabeled samples are used to carry out unsupervised pre-training for the model, and the model parameters are optimized through supervised fine-tuning. The example analysis results show that stacked sparse auto-encoder is more accurate than stack auto-encoder in application of fault diagnosis of mind-used transformer.
  • 期刊类型引用(24)

    1. 张文科,郭瑜,赵辉. 基于图像识别的煤矿带式输送机自适应调速系统设计. 煤炭工程. 2024(01): 220-224 . 百度学术
    2. 刘锋,白金牛. 基于视觉技术的胶带输送机煤量检测方法. 陕西煤炭. 2024(01): 52-57+64 . 百度学术
    3. 尚伟栋,杨大山,张坤. 基于深度神经网络的带式输送机煤量检测方法. 工矿自动化. 2024(S1): 139-145 . 本站查看
    4. 贾良杰,胡子波,赵娟. 基于永磁变频技术的刮板输送机调速系统节能分析. 煤矿机械. 2023(03): 139-141 . 百度学术
    5. 胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究. 煤炭科学技术. 2023(02): 377-389 . 百度学术
    6. 郝洪涛,王凯,丁文捷. 基于超声阵列的输送带动态煤量检测系统. 工矿自动化. 2023(04): 120-127 . 本站查看
    7. 吕晨辉,李新,刘新龙,赵安新,张晨阳. 基于煤量检测与变频一体机的煤流自适应智能调速. 煤矿机械. 2023(08): 213-216 . 百度学术
    8. 陈湘源,薛旭升. 基于线性模型划分的煤流体积测量. 工矿自动化. 2023(07): 35-40+106 . 本站查看
    9. 朱富文,侯志会,李明振. 轻量化的多尺度跨通道注意力煤流检测网络. 工矿自动化. 2023(08): 100-105 . 本站查看
    10. 刘飞,张乐群,潘红光,李利. 带式输送机煤量检测技术及其发展趋势. 中国煤炭. 2023(09): 77-83 . 百度学术
    11. 郭永涛,裴文良,马永飞,张旭华,谢海峰,寇丽梅. 矿用隔爆型煤量扫描装置的设计与应用. 集成电路应用. 2023(10): 322-323 . 百度学术
    12. 汪连成. 刮板输送机智能化技术及应用. 煤矿机械. 2022(01): 138-140 . 百度学术
    13. 刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 . 百度学术
    14. 王利欣,杨秀宇,袁鹏喆,尉瑞,秦文光,李波,张恩明. 智能掘进工作面智能视频安全管理系统的应用. 煤矿机械. 2022(09): 200-203 . 百度学术
    15. 孙鹏亮,吴少伟. 基于红外扫描装置的转载机煤量监测技术研究. 数字通信世界. 2022(08): 63-65 . 百度学术
    16. 郑忠友,朱磊,程海星,张光磊. 综放工作面采放协调关系及智能装备研究. 煤矿机械. 2021(01): 54-56 . 百度学术
    17. 卢进南,韩建国,王常宝,郭友瑞,王志良. 热电厂运煤车厢动态监测及体积测量方法. 煤矿机电. 2021(01): 49-53+56 . 百度学术
    18. 孙延飞. 悬臂掘进机截割方量测量系统设计. 煤矿机械. 2021(09): 24-26 . 百度学术
    19. 崔亚平,朱时雪. 基于激光线扫描的桥梁检测仪器误差自动化矫正方法研究. 自动化与仪器仪表. 2020(01): 32-35 . 百度学术
    20. 韩涛,黄友锐,张立志,徐善永,许家昌,鲍士水. 基于图像识别的带式输送机输煤量和跑偏检测方法. 工矿自动化. 2020(04): 17-22 . 本站查看
    21. 王杰. 矿用隔爆型煤量扫描装置设计与应用. 煤. 2020(06): 49-50 . 百度学术
    22. 赵倩,陈杨军. 激光技术的轨道表面瑕疵识别系统设计. 激光杂志. 2020(08): 110-114 . 百度学术
    23. 王文清,田柏林,冯海明,陈兴明,李萍,任安祥. 基于激光测距矿用带式输送机多参数检测方法研究. 煤炭科学技术. 2020(08): 131-138 . 百度学术
    24. 武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  76
  • HTML全文浏览量:  17
  • PDF下载量:  15
  • 被引次数: 33
出版历程
  • 刊出日期:  2018-10-09

目录

    /

    返回文章
    返回