Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIU Zhenguo, YU Hai, FENG Shiguang, et al. Risk assessment method for external breakage of overhead lines in mining areas[J]. Journal of Mine Automation,2023,49(10):43-51.  doi: 10.13272/j.issn.1671-251x.2023070004
Citation: LIU Zhenguo, YU Hai, FENG Shiguang, et al. Risk assessment method for external breakage of overhead lines in mining areas[J]. Journal of Mine Automation,2023,49(10):43-51.  doi: 10.13272/j.issn.1671-251x.2023070004

Risk assessment method for external breakage of overhead lines in mining areas

doi: 10.13272/j.issn.1671-251x.2023070004
  • Received Date: 2023-07-03
  • Rev Recd Date: 2023-10-20
  • Available Online: 2023-10-24
  • The operating environment of overhead lines in mining areas is harsh. The lines are easily affected by external factors, leading to line breakage. It is necessary to accurately evaluate the risk level of external breakage of overhead lines in mining areas. However, existing qualitative evaluation methods have shortcomings such as strong subjectivity and poor comparability of evaluation results. Although quantitative evaluation methods have high objectivity, the accurate evaluation is based on a large amount of high-quality data. In order to balance the objectivity of the evaluation results and the difficulty of obtaining evaluation data, the likelihood exposure consequence (LEC) method in semi quantitative evaluation method is adopted. Based on the actual operating environment of mining area lines, an improved LEC method is proposed for the risk assessment of external breakage of overhead lines in mining areas. Firstly, by analyzing the actual operating environment of overhead lines in mining areas, the main risk factors of external breakage are identified. The risk assessment index system for external breakage of overhead lines in mining areas is constructed. Secondly, using the YOLOv5 based image recognition strategy to identify the sources of external breakage risk in the line environment, real-time acquisition of external breakage risk data of the line is achieved. It overcomes the shortcomings of poor real-time performance and insufficient data volume obtained manually by traditional LEC methods. Thirdly, the element assignment rules of the LEC method are improved. The elements are assigned based on image recognition results to achieve real-time evaluation of the risk of external breakage to the line. It improves the objectivity of the evaluation results and solves the problem of the traditional LEC method's element assignment relying on the personal experience of the evaluator. Finally, in order to measure the superimposed impact of various risks, the analytic hierarchy process is used to determine the weight of each risk evaluation index. Ultimately, the comprehensive assessment of the risk of external breakage to overhead lines in mining areas is achieved. A case study is conducted during the actual operation of an open-pit coal mine. The results show that this method can effectively evaluate the risk level of external breakage of overhead lines in specific scenarios.

     

  • loading
  • [1]
    赵明辉. 煤矿供电系统安全评价研究及应用[D]. 西安:西安科技大学,2019.

    ZHAO Minghui. Safety evaluation and application of coal mine power supply system[D]. Xi'an:Xi'an University of Science and Technology,2019.
    [2]
    吴昊. 输电系统运行风险评估方法[J]. 电力系统及其自动化学报,2017,29(12):139-145. doi: 10.3969/j.issn.1003-8930.2017.12.022

    WU Hao. Operation risk assessment method for transmission system[J]. Proceedings of the CSU-EPSA,2017,29(12):139-145. doi: 10.3969/j.issn.1003-8930.2017.12.022
    [3]
    李轶. 基于多源数据融合的电网巡检安全评价方法研究[D]. 宜昌:三峡大学,2019.

    LI Yi. Research on safety evaluation method of power grid inspection based on multivariate data fusion[D]. Yichang:China Three Gorges University,2019.
    [4]
    黄新波,吴明松,朱永灿,等. 基于模糊数学的电缆线路风险评估模型研究[J]. 高压电器,2021,57(9):19-25. doi: 10.13296/j.1001-1609.hva.2021.09.003

    HUANG Xinbo,WU Mingsong,ZHU Yongcan,et al. Research on risk assessment model of cable line based on fuzzy mathematics[J]. High Voltage Apparatus,2021,57(9):19-25. doi: 10.13296/j.1001-1609.hva.2021.09.003
    [5]
    胡志鹏,刘剑,张玻,等. 基于风险关键特征量的输电线路运行环境风险评估[J]. 电力系统自动化,2017,41(18):160-166. doi: 10.7500/AEPS20161213002

    HU Zhipeng,LIU Jian,ZHANG Bo,et al. Risk assessment of operation environment for transmission lines based on risk key characteristic[J]. Automation of Electric Power Systems,2017,41(18):160-166. doi: 10.7500/AEPS20161213002
    [6]
    颜祖明. 基于数据驱动的输电线路状态评估方法及运维策略研究[D]. 广州:广东工业大学,2022.

    YAN Zuming. Research on state assessment method and operation and maintenance strategy of transmission lines based on data-driven[D]. Guangzhou:Guangdong University of Technology,2022.
    [7]
    刘小杰,付建国,苏敬厚,等. 基于安全评价的黑岱沟矿运输系统管控措施制定[J]. 煤矿安全,2015,46(增刊1):71-75. doi: 10.13347/j.cnki.mkaq.2015.S1.018

    LIU Xiaojie,FU Jianguo,SU Jinghou,et al. Decision of Heidaigou Mine transport system control based on safety assessment[J]. Safety in Coal Mines,2015,46(S1):71-75. doi: 10.13347/j.cnki.mkaq.2015.S1.018
    [8]
    王长申,孙亚军,杭远. 安全检查表法评价中小煤矿潜在突水危险性[J]. 采矿与安全工程学报,2009,26(3):297-303. doi: 10.3969/j.issn.1673-3363.2009.03.009

    WANG Changshen,SUN Yajun,HANG Yuan. Using safety checklist in assessment of potential risk of water inrush from medium and small mines[J]. Journal of Mining & Safety Engineering,2009,26(3):297-303. doi: 10.3969/j.issn.1673-3363.2009.03.009
    [9]
    陈友鹏,陈璟华,何东升,等. 基于蒙特卡洛模拟和综合评判法的配电变压器抗短路能力评估[J]. 广东电力,2022,35(1):60-69. doi: 10.3969/j.issn.1007-290X.2022.001.007

    CHEN Youpeng,CHEN Jinghua,HE Dongsheng,et al. Evaluation of short-circuit resistance ability of distribution transformer based on Monte Carlo simulation and comprehensive evaluation method[J]. Guangdong Electric Power,2022,35(1):60-69. doi: 10.3969/j.issn.1007-290X.2022.001.007
    [10]
    康新兴. 基于蒙特卡罗仿真的电力变压器故障树分析[J]. 国外电子测量技术,2018,37(10):5-9. doi: 10.19652/j.cnki.femt.1800994

    KANG Xinxing. Fault tree analysis of power transformer based on Monte Carlo simulation[J]. Foreign Electronic Measurement Technology,2018,37(10):5-9. doi: 10.19652/j.cnki.femt.1800994
    [11]
    曾芬钰,郝世旺. 电力变压器设备风险评估研究综述[J]. 电工电气,2023(2):9-14,66. doi: 10.3969/j.issn.1007-3175.2023.02.002

    ZENG Fenyu,HAO Shiwang. Research review on the risk assessment of power transformer equipments[J]. Electrotechnics Electric,2023(2):9-14,66. doi: 10.3969/j.issn.1007-3175.2023.02.002
    [12]
    云玉新,赵富强,张磊,等. 结合相关系数及改进层次分析法的油浸式变压器质量评估[J]. 重庆理工大学学报(自然科学),2022,36(5):203-210.

    YUN Yuxin,ZHAO Fuqiang,ZHANG Lei,et al. Quality evaluation of oil-immersed transformer based on correlation coefficient and improved analytic hierarchy process[J]. Journal of Chongqing University of Technology (Natural Science),2022,36(5):203-210.
    [13]
    沙池橙,林祖荣,钱振东,等. 基于灰色关联分析的定向权重式架空输电线路状态模糊评价方法[J/OL]. 武汉大学学报(工学版):1-11[2023-05-12]. http://kns.cnki.net/kcms/detail/42.1675.T.20220426.1115.002.html.

    SHA Chicheng,LIN Zurong,QIAN Zhendong,et al. Fuzzy evaluation method of directional weight overhead transmission line state based on grey correlation analysis[J/OL]. Engineering Journal of Wuhan University:1-11[2023-05-12]. http://kns.cnki.net/kcms/detail/42.1675.T.20220426.1115.002.html.
    [14]
    方权,刘闯,宋敏,等. 模糊评价与PSO优化的LSSVM架空输电线路故障率预测[J]. 水电能源科学,2021,39(1):171-175.

    FANG Quan,LIU Chuang,SONG Min,et al. Failure rate prediction of overhead transmission line based on fuzzy evaluation and PSO-optimized LSSVM[J]. Water Resources and Power,2021,39(1):171-175.
    [15]
    刘君,赵立进,黄良,等. 基于TOPSIS和灰色关联分析的变压器状态评价方法[J]. 电力科学与技术学报,2019,34(4):63-68. doi: 10.3969/j.issn.1673-9140.2019.04.009

    LIU Jun,ZHAO Lijin,HUANG Liang,et al. State evaluation method for power transformer based on the TOPSIS and grey relational analysis[J]. Journal of Electric Power Science and Technology,2019,34(4):63-68. doi: 10.3969/j.issn.1673-9140.2019.04.009
    [16]
    王书明. 某垃圾焚烧发电项目电气系统安全性评价[J]. 电力系统保护与控制,2017,45(24):163-168. doi: 10.7667/PSPC201780

    WANG Shuming. Safety evaluation of electrical system for a waste incineration power generation project[J]. Power System Protection and Control,2017,45(24):163-168. doi: 10.7667/PSPC201780
    [17]
    王君莉. 煤矿电气火灾风险的PHA−LEC评估模型及其应用[J]. 煤矿机械,2017,38(12):138-140. doi: 10.13436/j.mkjx.201712049

    WANG Junli. Risk assessment model for coal mine electrical fire based on PHA-LEC and application[J]. Coal Mine Machinery,2017,38(12):138-140. doi: 10.13436/j.mkjx.201712049
    [18]
    毛吉星. 煤矿风险管理技术与应用研究[J]. 煤矿安全,2016,47(11):230-233. doi: 10.13347/j.cnki.mkaq.2016.11.064

    MAO Jixing. Research on coal mine risk management technology and its application[J]. Safety in Coal Mines,2016,47(11):230-233. doi: 10.13347/j.cnki.mkaq.2016.11.064
    [19]
    黄悦华,陈照源,陈庆,等. 基于边缘计算和改进YOLOv5s算法的输电线路故障实时检测方法[J]. 电力建设,2023,44(1):91-99. doi: 10.12204/j.issn.1000-7229.2023.01.011

    HUANG Yuehua,CHEN Zhaoyuan,CHEN Qing,et al. Real-time detection method for transmission line faults applying edge computing and improved YOLOv5s algorithm[J]. Electric Power Construction,2023,44(1):91-99. doi: 10.12204/j.issn.1000-7229.2023.01.011
    [20]
    龙乐云,周腊吾,刘淑琴,等. 改进YOLOv5算法下的输电线路外破隐患目标检测研究[J]. 电子测量与仪器学报,2022,36(11):245-253. doi: 10.13382/j.jemi.B2205638

    LONG Leyun,ZHOU Lawu,LIU Shuqin,et al. Identification of hidden damage targets by external forces based on domain adaptation and attention mechanism[J]. Journal of Electronic Measurement and Instrumentation,2022,36(11):245-253. doi: 10.13382/j.jemi.B2205638
    [21]
    张可颖,吴新桥,赵继光,等. 基于特征工程和集成学习与模型融合的输电走廊实时山火风险评估模型[J/OL]. 电网技术:1-13 [2023-05-12]. https://doi.org/10.13335/j.1000-3673.pst.2022.2235.

    ZHANG Keying,WU Xinqiao,ZHAO Jiguang,et al. A real-time wildfire risk assessment model for transmission corridors based on feature engineering,ensemble learning and model fusion[J/OL]. Power System Technology:1-13 [2023-05-12]. https://doi.org/10.13335/j.1000-3673.pst.2022.2235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(12)

    Article Metrics

    Article views (112) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return