Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHANG Jingzhao, SU Huidong, YAN Zhenguo, et al. Research on dust reduction technology of air chamber in fully mechanized mining face[J]. Journal of Mine Automation,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062
Citation: ZHANG Jingzhao, SU Huidong, YAN Zhenguo, et al. Research on dust reduction technology of air chamber in fully mechanized mining face[J]. Journal of Mine Automation,2024,50(1):80-87.  doi: 10.13272/j.issn.1671-251x.2023060062

Research on dust reduction technology of air chamber in fully mechanized mining face

doi: 10.13272/j.issn.1671-251x.2023060062
  • Received Date: 2023-06-20
  • Rev Recd Date: 2024-01-15
  • Available Online: 2024-01-31
  • In response to the dust control problem in excavation roadways, the traditional long pressure short suction ventilation dust reduction technology has problems such as large dust diffusion areas and easy blockage of jet holes in the air curtain dust reduction technology. Taking the Balasu Coal Mine fully mechanized mining face as the engineering research background, a mathematical model of dust movement during the excavation process is established. It is found that the key factors to reduce the dust concentration in the fully mechanized mining face are to control the disturbance range of the wind flow field in the excavation roadway and reduce the movement time of dust particles. Based on the above key factors, an air chamber dust reduction technology has been developed on the basis of air curtain dust reduction. By installing air sleeves at the end of the positive pressure air duct and working together with the air curtain, the dust is enclosed in the air chamber area. The dust is extracted by a negative pressure fan to improve dust reduction efficiency. Fluent software is used to simulate and compare the dust reduction of long pressure short suction ventilation, air curtain, and air chamber. The technical parameters of air chamber dust reduction are optimized. The simulation results show that when using the air chamber dust reduction technology, the dust concentration at the breathing zone of the human body in the fully mechanized mining face is 350 mg/m3. It is significantly lower than the 600 mg/m3 when using long pressure and short suction ventilation for dust reduction and the 480 mg/m3 when using air curtain dust reduction. The optimal technical parameters for air chamber dust reduction are a positive pressure air duct 14 meters away from the excavation face and a negative pressure air duct end diameter of 0.6 meters. On site experiments are conducted on the fully mechanized mining face of the second coal seam and second return air roadway in Balasu Coal Mine. The results showed that when using air chamber dust reduction, the minimum dust concentration in the excavation roadway is 118 mg/m3. It is better than the 184 mg/m3 when using long pressure short suction ventilation and 156 mg/m3 when using air curtain dust reduction. The dust reduction efficiency is also improved by an average of 54.8% compared to long pressure short suction ventilation for dust reduction.

     

  • loading
  • [1]
    王雪涛,李静芸,别凤赛. 我国煤矿井下作业场所呼吸性粉尘危害现状调查[J]. 中华劳动卫生职业病杂志,2021,39(7):527-530.

    WANG Xuetao,LI Jingyun,BIE Fengsai. Investigation on the status of respirable dust hazards in underground mines in China[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases,2021,39(7):527-530.
    [2]
    周全超,杨胜强,蒋孝元,等. 综掘工作面粉尘分布规律及通风除尘优化研究[J]. 工矿自动化,2019,45(11):70-74,92.

    ZHOU Quanchao,YANG Shengqiang,JIANG Xiaoyuan,et al. Research on dust distribution law and optimization of ventilation and dust reduction on fully mechanized heading face[J]. Industry and Mine Automation,2019,45(11):70-74,92.
    [3]
    丁震,张雨晨. 煤矿井下粉尘浓度对UWB测距精度的影响研究[J]. 工矿自动化,2021,47(11):131-134.

    DING Zhen,ZHANG Yuchen. Research on the influence of coal mine dust concentration on UWB ranging precision[J]. Industry and Mine Automation,2021,47(11):131-134.
    [4]
    张宝林. 煤矿井下粉尘危害的防治[J]. 黑龙江科技信息,2016(29):42.

    ZHANG Baolin. Prevention and control of dust hazards in coal mine[J]. Heilongjiang Science and Technology Information,2016(29):42.
    [5]
    QIU Dongyang,CHEN Xianfeng,HAO Lijian,et al. Partial suppression of acetaminophendust explosion by synergistic multiphase inhibitors[J]. Process Safety and Environmental Protection,2023,172:262-272. doi: 10.1016/j.psep.2023.02.021
    [6]
    王彦,杨娟,王继业,等. 玉米淀粉和墨粉粉尘爆炸对无火焰爆炸泄压装置性能的影响[J]. 工业安全与环保,2023,49(2):10-14.

    WANG Yan,YANG Juan,WANG Jiye,et al. Effect of corn starch and toner dust explosion on performance of flameless venting device[J]. Industrial Safety and Environmental Protection,2023,49(2):10-14.
    [7]
    杜双利,张玉,张欢,等. 矿井煤尘爆炸及抑爆技术的研究现状及发展趋势[J]. 能源与环保,2022,44(8):296-301.

    DU Shuangli,ZHANG Yu,ZHANG Huan,et al. Research status and development trend of coal dust explosion and explosion suppression technology[J]. China Energy and Environmental Protection,2022,44(8):296-301.
    [8]
    钱继发,刘贞堂,洪森,等. 煤尘爆炸固态产物的矿物质特性研究[J]. 煤炭学报,2018,43(11):3145-3153.

    QIAN Jifa,LIU Zhentang,HONG Sen,et al. Mineral features in coal dust explosion residues[J]. Journal of China Coal Society,2018,43(11):3145-3153.
    [9]
    杜永星. 综采工作面新型风助喷雾降尘装置研制及应用[J]. 山东煤炭科技,2021,39(4):100-102.

    DU Yongxing. Development and application of new wind-assisted spray dust control device in fully mechanized mining face[J]. Shandong Coal Science and Technology,2021,39(4):100-102.
    [10]
    张凯,陈天明,王冰洋,等. 综掘巷道抽出式通风粉尘运移规律仿真模拟研究[J]. 煤矿现代化,2022,31(6):74-77,83.

    ZHANG Kai,CHEN Tianming,WANG Bingyang,et al. Simulation study on dust transport law of extraction ventilation in fully mechanized roadway[J]. Coal Mine Modernization,2022,31(6):74-77,83.
    [11]
    GUO Lidian,NIE Wen,YIN Shuai,et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling[J]. Building and Environment,2020,178. DOI: 10.1016/j.buildenv.2020.106846.
    [12]
    陈云,张亮,黎志. 煤坪降尘用雾炮机降噪装置的研究与应用[J]. 煤炭技术,2021,40(7):140-142.

    CHEN Yun,ZHANG Liang,LI Zhi. Research and application of noise reduction device of fog gun used for coal flat dust removal[J]. Coal Technology,2021,40(7):140-142.
    [13]
    魏星,高丹红,张国宝. 旋流气幕系统对综掘面控尘流场的影响研究[J]. 矿业研究与开发,2019,39(12):109-115.

    WEI Xing,GAO Danhong,ZHANG Guobao. The impact of swirling air curtain system on the dust control flow field in the fully-mechanized excavation face[J]. Mining Research and Development,2019,39(12):109-115.
    [14]
    张恒. 综掘面尘源点对粉尘分布规律的影响及降尘措施的研究[D]. 西安:西安科技大学,2019.

    ZHANG Heng. Study on dust distribution rule affected by dust source and dust reduction measures in fully mechanized heading face[D]. Xi'an:Xi'an University of Science and Technology,2019.
    [15]
    马文杰. 综掘工作面气室降尘技术及其优化研究[D]. 西安:西安科技大学,2022.

    MA Wenjie. Research on dust suppression technology and optimization of air cell in fully mechanized excavation face[D]. Xi'an:Xi'an University of Science and Technology,2022.
    [16]
    赵政. 综掘工作面呼吸性粉尘运动方程研究[J]. 矿业安全与环保,2023,50(1):14-18,24.

    ZHAO Zheng. Research on the motion equation of respirable dust in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2023,50(1):14-18,24.
    [17]
    乔力伟. 风幕通风方式下施工隧道粉尘浓度场相似模化实验与数值模拟[D]. 成都:西南交通大学,2019.

    QIAO Liwei. Similarity modeling experiment and numerical simulation in dust concentration field under air curtain ventilation mode[D]. Chengdu:Southwest Jiaotong University,2019.
    [18]
    宋亚新,王帅,马国良,等. 涡流场中粉尘颗粒的沉降与扩散规律研究[J]. 能源与环保,2021,43(12):9-13.

    SONG Yaxin,WANG Shuai,MA Guoliang,et al. Study on laws of sedimentation and diffusion of dust particles in vortex field[J]. China Energy and Environmental Protection,2021,43(12):9-13.
    [19]
    龚晓燕,彭高高,宋涛,等. 掘进工作面长压短抽通风出风口风流调控参数研究[J]. 工矿自动化,2021,47(9):45-52.

    GONG Xiaoyan,PENG Gaogao,SONG Tao,et al. Study on air flow control parameters of long-pressure and short-extraction ventilation air outlets in heading face[J]. Industry and Mine Automation,2021,47(9):45-52.
    [20]
    龚晓燕,费颖豪,牛虎明,等. 掘进面出风口风流与风幕调控下的粉尘分布响应曲面优化研究[J]. 中国安全生产科学技术,2022,18(12):80-88.

    GONG Xiaoyan,FEI Yinghao,NIU Huming,et al. Study on response surface optimization of dust distribution under regulation of air flow and air curtain at air outlet of excavation face[J]. Journal of Safety Science and Technology,2022,18(12):80-88.
    [21]
    代江娇,黄家海,荔军,等. 掘进巷道除尘系统风筒参数的数值优化[J]. 煤矿安全,2016,47(2):180-183.

    DAI Jiangjiao,HUANG Jiahai,LI Jun,et al. Numerical optimization of fan drum parameters in ventilation system of drifting tunnel[J]. Safety in Coal Mines,2016,47(2):180-183.
    [22]
    罗庆云,唐艺芳,陈世强,等. 顺风流动下单双层喷嘴雾化特性的数值模拟研究[J]. 资源信息与工程,2023,38(3):116-120.

    LUO Qingyun,TANG Yifang,CHEN Shiqiang,et al. Numerical simulation of atomization characteristics for single-and double-layer nozzle under downwind flow[J]. Resource Information and Engineering,2023,38(3):116-120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (89) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return