Volume 49 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Cheng, LI Bofan, WU Zhang, et al. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation,2023,49(10):127-132, 159.  doi: 10.13272/j.issn.1671-251x.2022110089
Citation: WANG Cheng, LI Bofan, WU Zhang, et al. Research on the application of inter hole resistivity monitoring in grouting effect detection[J]. Journal of Mine Automation,2023,49(10):127-132, 159.  doi: 10.13272/j.issn.1671-251x.2022110089

Research on the application of inter hole resistivity monitoring in grouting effect detection

doi: 10.13272/j.issn.1671-251x.2022110089
  • Received Date: 2022-11-24
  • Rev Recd Date: 2023-10-18
  • Available Online: 2023-10-23
  • The main technical means for preventing and controlling karst water damage in the coal seam floor of North China type coal fields are grouting transformation of the water-bearing rock layer. Currently, the main method for testing the grouting effect is to analyze the lithological features before and after grouting. There is a lack of tracking and dynamic monitoring of the entire grouting process, making it difficult to accurately evaluate the grouting effect. In order to solve the above problems, an inter hole resistivity monitoring system is introduced to monitor the entire process of resistivity changes in grouting transformed rock layers, in order to achieve precise detection of the slurry diffusion range. Firstly, an improved electrode and cable device is used to place the resistivity monitoring system in a long directional borehole on the coal seam floor, achieving resistivity monitoring between boreholes. Secondly, a geological model of slurry diffusion is constructed, and the simulated data is processed and interpreted using three-dimensional resistivity inversion. Finally, engineering tests are conducted on the inter hole resistivity monitoring of the entire grouting process at the injection layer underground in the coal mine. The simulation results indicate that inter hole resistivity monitoring can identify the diffusion range of slurry anomalies. Based on the trend of resistivity changes over time, the diffusion range of slurry can be inferred. As the slurry gradually diffuses, the range of anomalous areas gradually increases and the intensity of anomalies gradually increases. The engineering test results show that the resistivity monitoring system is arranged on the grouting layer through drilling for dynamic monitoring. After three-dimensional inversion imaging of the monitoring data, the features of resistivity changes in the grouting layer caused by slurry diffusion can be successfully captured. It provides a feasible technical solution for detecting the grouting effect in coal mines.

     

  • loading
  • [1]
    虎维岳. 深部煤炭开采地质安全保障技术现状与研究方向[J]. 煤炭科学技术,2013,41(8):1-5,14.

    HU Weiyue. Study orientation and present status of geological guarantee technologies to deep mine coal mining[J]. Coal Science and Technology,2013,41(8):1-5,14.
    [2]
    虎维岳,赵春虎,吕汉江. 煤层底板水害区域注浆治理影响因素分析与高效布孔方式[J]. 煤田地质与勘探,2022,50(11):134-143. doi: 10.12363/issn.1001-1986.22.04.0279

    HU Weiyue,ZHAO Chunhu,LYU Hanjiang. Main influencing factors for regional pre-grouting technology of water hazard treatment in coal seam floor and efficient hole arrangement[J]. Coal Geology & Exploration,2022,50(11):134-143. doi: 10.12363/issn.1001-1986.22.04.0279
    [3]
    刘明军,王钢,崔岩波. 准格尔矿区井下水害区域超前探查防治技术[J]. 煤炭工程,2021,53(8):70-74.

    LIU Mingjun,WANG Gang,CUI Yanbo. Advance detection and prevention technology against water hazard in underground mine of Junger Coalfield[J]. Coal Engineering,2021,53(8):70-74.
    [4]
    邢茂林,郑士田,石志远,等. 注浆改造厚含水砂层提高开采上限技术及应用[J]. 煤田地质与勘探,2023,51(5):113-122.

    XING Maolin,ZHENG Shitian,SHI Zhiyuan,et al. Technology of raising upper limit of mining by grouting reconstruction in thick water-bearing sand layer and its application[J]. Coal Geology & Exploration,2023,51(5):113-122.
    [5]
    刘小平,李姗,刘新星,等. 煤矿采空区注浆治理工后质量检测技术与实践[J]. 煤田地质与勘探,2020,48(5):113-122.

    LIU Xiaoping,LI Shan,LIU Xinxing,et al. Method and practice of quality test after grouting in coal mine goaf[J]. Coal Geology & Exploration,2020,48(5):113-122.
    [6]
    薛翊国,李术才,苏茂鑫,等. 青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究[J]. 岩石力学与工程学报,2011,30(7):1382-1388.

    XUE Yiguo,LI Shucai,SU Maoxin,et al. Study of comprehensive test method for grouting effect of water filling fault in Qingdao Kiaochow bay subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1382-1388.
    [7]
    刘世奇,许延春,费宇,等. 声波检测技术在裂隙岩体注浆加固工程质量检测中的应用[J]. 西安科技大学学报,2018,38(3):396-402.

    LIU Shiqi,XU Yanchun,FEI Yu,et al. Application of ultrasonic testing technology to quality inspection of grouting reinforcement in fractured rock mass[J]. Journal of Xi'an University of Science and Technology,2018,38(3):396-402.
    [8]
    李雁,李兵,姚帅,等. 基于CT扫描的受载破裂煤样注浆封堵效应量化研究[J]. 工矿自动化,2022,48(4):53-59.

    LI Yan,LI Bing,YAO Shuai,et al. Quantitative study on grouting plugging effect of loaded fractured coal sample based on CT scanning[J]. Journal of Mine Automation,2022,48(4):53-59.
    [9]
    刘鑫明,刘树才,姜志海,等. 电阻率三维反演中加权光滑因子的影响及注浆检测应用[J]. 中国矿业大学学报,2013,42(1):88-92.

    LIU Xinming,LIU Shucai,JIANG Zhihai,et al. Weighted smooth factor impact on 3D DC resistivity inversion and application in grouting effect detection[J]. Journal of China University of Mining & Technology,2013,42(1):88-92.
    [10]
    刘恋,魏名地,臧公瑾. 高密度电法在煤矿采空区注浆检测中的应用[J]. 煤炭技术,2017,36(7):197-198.

    LIU Lian,WEI Mingdi,ZANG Gongjin. Application of high density resistivity method in grouting detection in old coal mining area[J]. Coal Technology,2017,36(7):197-198.
    [11]
    齐飞,杨帅. 物探技术在煤矿注浆堵水工程中的应用研究[J]. 煤炭工程,2019,51(增刊1):88-92.

    QI Fei,YANG Shuai. Application of geophysical prospecting technology in coal mine grouting and water blocking project[J]. Coal Engineering,2019,51(S1):88-92.
    [12]
    常青,郭伟. 瞬变电磁在煤矿突涌水预报及注浆中的靶向定位研究[J]. 煤炭技术,2017,36(9):174-176.

    CHANG Qing,GUO Wei. Transient wlectromagnetic detection in outburst water prediction and grouting target location in coal mine[J]. Coal Technology,2017,36(9):174-176.
    [13]
    柴敬,周余,欧阳一博,等. 基于光纤监测的注浆浆液扩散范围试验研究[J]. 中国矿业大学学报,2022,51(6):1045-1055. doi: 10.13247/j.cnki.jcumt.001450

    CHAI Jing,ZHOU Yu,OUYANG Yibo,et al. Experimental study of diffusion range of grouting slurry based on optical fiber monitoring[J]. Journal of China University of Mining & Technology,2022,51(6):1045-1055. doi: 10.13247/j.cnki.jcumt.001450
    [14]
    湛铠瑜,隋旺华. 动水条件下单裂隙注浆模型试验系统设计[J]. 实验室研究与探索,2011,30(10):19-23,67. doi: 10.3969/j.issn.1006-7167.2011.10.006

    ZHAN Kaiyu,SUI Wanghua. Design of model test system for grouting into a single fracture with flowing water[J]. Research and Exploration in Laboratory,2011,30(10):19-23,67. doi: 10.3969/j.issn.1006-7167.2011.10.006
    [15]
    湛铠瑜,隋旺华,高岳. 单一裂隙动水注浆扩散模型[J]. 岩土力学,2011,32(6):1659-1663,1689. doi: 10.3969/j.issn.1000-7598.2011.06.011

    ZHAN Kaiyu,SUI Wanghua,GAO Yue. A model for grouting into single fracture with flowing water[J]. Rock and Soil Mechanics,2011,32(6):1659-1663,1689. doi: 10.3969/j.issn.1000-7598.2011.06.011
    [16]
    湛铠瑜,隋旺华,王文学. 裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J]. 岩土力学,2012,33(9):2650-2655,2662.

    ZHAN Kaiyu,SUI Wanghua,WANG Wenxue. Correlation analysis of seepage pressure and water plugging effect during grouting into a fracture with flowing water[J]. Rock and Soil Mechanics,2012,33(9):2650-2655,2662.
    [17]
    姜春露,姜振泉,刘盛东,等. 多孔岩石化学注浆过程中视电阻率变化试验[J]. 中南大学学报(自然科学版),2013,44(10):4202-4207.

    JIANG Chunlu,JIANG Zhenquan,LIU Shengdong,et al. Experiment on apparent resistivity changes in porous rock chemical grouting process[J]. Journal of Central South University(Science and Technology),2013,44(10):4202-4207.
    [18]
    靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10-17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10-17.
    [19]
    王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118-121.

    WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118-121.
    [20]
    鲁晶津,王冰纯,李德山. 回采工作面电阻率监测技术与装备[C]. 中国地球科学联合学术年会,北京,2018:8-9.

    LU Jingjin,WANG Bingchun,LI Deshan. Resistivity monitoring technology and equipment for mining face[C]. Annual Meeting of Chinese Geoscience Union(CGU),Beijing,2018:8-9.
    [21]
    鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化,2021,47(2):18-25.

    LU Jingjin. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industry and Mine Automation,2021,47(2):18-25.
    [22]
    虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1-8. doi: 10.3969/j.issn.1001-1986.2019.05.001

    HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1-8. doi: 10.3969/j.issn.1001-1986.2019.05.001
    [23]
    谷拴成,孙冠临,苏培莉,等. 岩体裂隙动水注浆扩散半径影响试验[J]. 煤田地质与勘探,2019,47(5):144-149.

    GU Shuancheng,SUN Guanlin,SU Peili,et al. Test of the influence of dynamic water grouting diffusion radius of fractures in rock[J]. Coal Geology & Exploration,2019,47(5):144-149.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (115) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return