Volume 49 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WANG Baobing, WANG Kai, WANG Dandan, et al. Research progress and challenges faced by unmanned aerial vehicles in complex underground spaces[J]. Journal of Mine Automation,2023,49(7):6-13, 48.  doi: 10.13272/j.issn.1671-251x.2022100078
Citation: WANG Baobing, WANG Kai, WANG Dandan, et al. Research progress and challenges faced by unmanned aerial vehicles in complex underground spaces[J]. Journal of Mine Automation,2023,49(7):6-13, 48.  doi: 10.13272/j.issn.1671-251x.2022100078

Research progress and challenges faced by unmanned aerial vehicles in complex underground spaces

doi: 10.13272/j.issn.1671-251x.2022100078
  • Received Date: 2022-10-25
  • Rev Recd Date: 2023-07-04
  • Available Online: 2023-08-03
  • The technological development and application status of underground complex space UAVs are analyzed. It is pointed out that underground complex space UAVs face problems such as insufficient individual performance, limited environmental situational awareness and autonomous navigation capabilities, and limited formation collaboration capabilities. In order to solve the above problems, the development trends of key technologies for underground UAVs are prospected. ① Small and lightweight integrated UAV design technology is proposed. By improving the mechanical structure of the UAV, improving the integration of information perception sensors such as LiDAR and depth camera with control systems, and optimizing power management systems, the ultimate goal is to improve the cruise speed, endurance time, and other performance of individual UAV. ② Situation awareness and autonomous navigation technology in GPS rejection environment is proposed. The key technical challenges such as simultaneous localization and mapping (SLAM) navigation and real-time path planning should be overcome. The limitations of algorithms around specific scenarios should be gradually broken through. The perception capability, environmental adaptability, and robustness of unmanned systems should be improved. ③ Formation collaboration control technology under limited information is proposed. The technical problems such as heterogeneous/isomorphic UAV cluster collaboration, and wireless communication in complex channel environments should be overcome. By optimizing UAV swarm intelligence control strategies, information interaction mechanisms, and task decision-making collaboration mechanisms, the robustness of clustered unmanned systems should be enhanced. The adaptability of unmanned systems in complex underground environments should be improved. Furthermore, the task execution efficiency and success rate of unmanned systems should be improved.

     

  • loading
  • [1]
    郑学召,童鑫,张铎,等. 矿井危险区域多旋翼侦测无人机关键技术探讨[J]. 工矿自动化,2020,46(12):48-56.

    ZHENG Xuezhao,TONG Xin,ZHANG Duo,et al. Discussion on key technologies of multi-rotor detection UAVs in mine dangerous area[J]. Industry and Mine Automation,2020,46(12):48-56.
    [2]
    张铎,吴佩利,郑学召,等. 矿井侦测无人机研究现状与发展趋势[J]. 工矿自动化,2020,46(7):76-81.

    ZHANG Duo,WU Peili,ZHENG Xuezhao,et al. Research status and development trend of mine detection unmanned aerial vehicle[J]. Industry and Mine Automation,2020,46(7):76-81.
    [3]
    XU Wei,ZHANG Fu. Fast-lio:a fast,robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters,2021,6(2):3317-3324. doi: 10.1109/LRA.2021.3064227
    [4]
    ZHANG Kunyi,JIANG Chenxing,LI Jinghang,et al. DIDO:deep inertial quadrotor dynamical odometry[J]. arXiv e-prints,2022,7(4):9083-9090.
    [5]
    SHEN Hongming,ZONG Qun,TIAN Bailing,et al. Voxel-based localization and mapping for multi-robot system in GPS-denied environments[J]. IEEE Transactions on Industrial Electronics,2022,69(10):10333-10342. doi: 10.1109/TIE.2022.3153822
    [6]
    ZHANG Ji,HU Chen,CHADHA R G,et al. Falco:fast likelihood-based collision avoidance with extension to human-guided navigation[J]. Journal of Field Robotics,2020,37:1300-1313. DOI: 10.1002/rob.21952.
    [7]
    ZHU Hongbiao, CAO Chao, XIA Yukun, et al. DSVP: dual-stage viewpoint planner for rapid exploration by dynamic expansion[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, 2021: 7623-7630.
    [8]
    CAO Chao, ZHU Hongbiao, CHOSET H, et al. Tare: a hierarchical framework for efficiently exploring complex 3D environments[C]. Robotics: Science and System (RSS), 2021. DOI: 10.15607/RSS.2021.XVII.018.
    [9]
    YANG Fan, CAO Chao, ZHU Hongbiao, et al. Far planner: fast, attemptable route planner using dynamic visibility update[J]. Computer Science ArXiv, 2021. DOI: 10.48550/arXiv.2110.09460
    [10]
    ZHOU Boyu,ZHANG Yichen,CHEN Xinyi,et al. Fuel:fast UAV exploration using incremental frontier structure and hierarchical planning[J]. IEEE Robotics and Automation Letters,2021,6(2):779-786. doi: 10.1109/LRA.2021.3051563
    [11]
    ZHOU Xin,WANG Zhepei,YE Hongkai,et al. EGO-planner:an ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters,2021,6(2):478-485. doi: 10.1109/LRA.2020.3047728
    [12]
    ZHOU Boyu, GAO Fei, PAN Jie, et al. Robust real-time UAV replanning using guided gradient-based optimization and topological paths[C]. IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020: 208-1214.
    [13]
    张学伟,田栢苓,鲁瀚辰,等. 面向复杂未知多障碍环境的多无人机分布式在线轨迹规划[J]. 中国科学:信息科学,2022,52(9):1627-1641.

    ZHANG Xuewei,TIAN Bailing,LU Hanchen,et al. Multi-UAV decentralized online trajectory planning in complex unknown obstacle-rich environments[J]. Scientia Sinica(Informationis),2022,52(9):1627-1641.
    [14]
    HOU Jialiang,ZHOU Xin,GAN Zhongxue,et al. Enhanced decentralized autonomous aerial robot teams with group planning[J]. IEEE Robotics and Automation Letters,2022,7(4):9240-9247. doi: 10.1109/LRA.2022.3191037
    [15]
    刘栋. 矿井无人机飞行轨迹定位及多机协同搜索方法的研究 [D]. 徐州: 中国矿业大学, 2018.

    LIU Dong. Research on UAV flight trajectory localization and multi-UAV collaborative search method for coal mine environment[D]. Xuzhou: China University of Mining and Technology, 2018.
    [16]
    TIAN Bailing, LIU Lihong, LU Hanchen, et al. Multivariable finite time attitude control for quadrotor UAV: theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018(3). DOI: 10.1109/tie.2017.2739700.
    [17]
    JI Jialin, ZHOU Xin, XU Chao, et al. CMPCC: corridor-based model predictive contouring control for aggressive drone flight[J]. arXiv, 2020. DOI: 10.48550/arXiv.2007.03271.
    [18]
    DING Ziming, YANG Tiankai, ZHANG Kunyi, et al. VID-fusion: robust visual-inertial-dynamics odometry for accurate externa VID-fusion l force estimation[C]. IEEE International Conference on Robotics and Automation (ICRA), Xi'an, 2021: 14469-14475.
    [19]
    SEO H, LEE D, SON C, et al. Robust trajectory planning for a multirotor against disturbance based on Hamilton-Jacobi reachability analysis[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Macau, 2019: 3150-3157.
    [20]
    PHILIPP F, KAUFMANN E, ROMERO A, et al. Agilicious: open-source and open-hardware agile quadrotor for vision-based flight[J]. Research Article: Science Robotics, 2022, 7(67). DOI: 10.1126/scirobotics.abl6259.
    [21]
    CAO Chao, ZHU Hongbiao, YANG Fan, et al. Autonomous exploration development environment and the planning algorithms[C]. IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, 2022: 8921-8928.
    [22]
    Tactical Technology Office (TTO) . DARPA subterranean (SubT) challenge[R]. Arlington: Tactical Technology Office (TTO), 2018.
    [23]
    浙江在线. “机器探长”集结 智探湖州黄龙洞[EB/OL]. (2022-08-15)[2022-10-27]. https://huzhou.zjol.com.cn/yw18229/202208/t20220815_24660994.shtml.

    Zhejiang online. "Machine inspector" gathered wisdom to explore the Huanglong Cave of Huzhou[EB/OL]. (2022-08-15)[2022-10-27]. https://huzhou.zjol.com.cn/yw18229/202208/t20220815_24660994.shtml.
    [24]
    王彤,李磊,蒋琪. 美国“快速轻量自主”项目推进无人系统自主能力发展[J]. 无人系统技术,2019,2(1):58-64.

    WANG Tong,LI Lei,JIANG Qi. DARPA fast lightweight autonomy program promotes unmanned system autonomy development[J]. Unmanned Systems Technology,2019,2(1):58-64.
    [25]
    PASCHALL S, ROSE J. Fast, lightweight autonomy through an unknown cluttered environment: Distribution statement: A—approved for public release;distribution unlimited[C]. IEEE Aerospace Conference, Big Sky, 2017: 1-8.
    [26]
    GOHL P, BURRI M, OMARI S, et al. Towards autonomous mine inspection[C]. The 2014 3rd International Conference on Applied Robotics for the Power Industry, Foz do Iguacu, 2014. DOI: 10.1109/CARPI.2014.7030057.
    [27]
    Exyn Technologies. Exyn aero aerial mapping drone [EB/OL].[2022-07-27]. https://www.exyn.com/products/exyn-aero-aerial-mapping-drone.
    [28]
    FLYABLITY. Elios 3-Digitizing the inaccessible. [DB/OL]. [2022-07-27]. https://www.flyability.com/elios-3.
    [29]
    孙继平,钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术,2017,45(1):112-116,153.

    SUN Jiping,QIAN Xiaohong. Emergency rescue technology and equipment of mine extraordinary accidents[J]. Coal Science and Technology,2017,45(1):112-116,153.
    [30]
    李新年,李清华,王常虹,等. 美国地下领域无人系统发展现状及启示[J]. 导航定位与授时,2021,8(6):52-59.

    LI Xinnian,LI Qinghua,WANG Changhong,et al. Development and enlightenment of unmanned underground system in the United States[J]. Navigation Positioning and Timing,2021,8(6):52-59.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (222) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return