Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020
Citation: CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020

Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance

doi: 10.13272/j.issn.1671-251x.2022090020
  • Received Date: 2022-09-02
  • Rev Recd Date: 2023-03-10
  • Available Online: 2022-10-17
  • The traditional convergence instrument, 3D laser scanning and other monitoring technologies for the deformation of surrounding rock in the mine roadway can not meet the comprehensive monitoring requirements of complex projects. The technologies have low real-time and automatic monitoring degree, and do not have the capability of long-distance, high-precision and large-area monitoring. The existing optical fiber sensing technology only monitors the single parameter of the surrounding rock in the roadway. It can not comprehensively analyze the stability of the surrounding rock in the roadway. Taking the main adit of a coal mine as the engineering background, the stability of surrounding rock before and after the filling above the adit is studied by numerical simulation. The results show that the filling engineering causes the bearing pressure of surrounding rock on both sides of the adit to rise with asymmetric distribution. The maximum subsidence of the top plate increases from 8.3 mm before filling to 22.1 mm. The maximum floor heave increases from 4.0 mm to 8.5 mm. The maximum increase of the displacement of the two sides is 16.2 mm. The deformation of the surrounding rock corresponds strongly to the bearing pressure, which increases with the thickness of the filling above the adit. The fiber Bragg grating (FBG) sensor is used to construct the adit surrounding rock deformation monitoring system. The FBG sensor is set at the adit section to monitor the opening of the adit arch crown crack, the deformation of the roof, floor and both sides, and the stress and strain of the section. The local deformation of the surrounding rock is analyzed through the real-time spectrum. The results show that the adit roof is obviously under pressure under the influence of the disturbance of the overburden load under the existing condition of stone masonry arch support. The maximum subsidence of the roof is about 30 mm, forming a crack about 2 mm wide. The monitoring results are consistent with the numerical simulation and field observation results. The result verifies the effectiveness of the FBG-based adit surrounding rock stability monitoring method. According to the monitoring results, the reinforcement support scheme of bolt+T-shaped steel plate is proposed for the weak part of the adit support. The support effect is verified by numerical simulation. The results show that after the optimized support scheme, the maximum subsidence of the adit roof under the disturbance of overburden load is 11.3 mm. The maximum displacement of the two sides is 12.04 mm, and the average reduction of the surrounding rock deformation is 48.8%. The scheme improves the stability of the surrounding rock.

     

  • loading
  • [1]
    张桂生,毛江鸿,何勇,等. 基于BOTDA的隧道变形监测技术研究[J]. 公路交通科技(应用技术版),2009,5(8):190-192.

    ZHANG Guisheng,MAO Jianghong,HE Yong,et al. Research on tunnel deformation monitoring technology based on BOTDA[J]. Highway Traffic Technology(Applied Technology Edition ),2009,5(8):190-192.
    [2]
    柴敬,张丁丁,李毅. 光纤传感技术在岩土与地质工程中的应用研究进展[J]. 建筑科学与工程学报,2015,32(3):28-37. doi: 10.3969/j.issn.1673-2049.2015.03.005

    CHAI Jing,ZHANG Dingding,LI Yi. Research progress of optical fiber sensing technology in geotechnical and geological engineering[J]. Journal of Architecture and Civil Engineering,2015,32(3):28-37. doi: 10.3969/j.issn.1673-2049.2015.03.005
    [3]
    程刚,王振雪,朱鸿鹄,等. 基于分布式光纤感测的岩土体变形监测研究综述[J]. 激光与光电子学进展,2022,59(19):51-70.

    CHENG Gang,WANG Zhenxue,ZHU Honghu,et al. Research review of rock and soil deformation monitoring based on distributed fiber optic sensing[J]. Laser & Optoelectronics Progress,2022,59(19):51-70.
    [4]
    柴敬,刘永亮,袁强,等. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术,2021,49(1):208-217.

    CHAI Jing,LIU Yongliang,YUAN Qiang,et al. Theory-technology and application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology,2021,49(1):208-217.
    [5]
    柴敬,杜文刚,袁强,等. 物理模型试验光纤传感技术测试方法分析[J]. 西安科技大学学报,2018,38(5):728-736.

    CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test based on optical fiber sensing technology detection[J]. Journal of Xi'an University of Science and Technology,2018,38(5):728-736.
    [6]
    李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.

    LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11. 2402.td.20220826.1716.006.html.
    [7]
    兰建功,张红俊. 基于光纤光栅传感器的巷道矿压监测方法研究[J]. 煤炭技术,2022,41(2):121-124.

    LAN Jiangong,ZHANG Hongjun. Research on roadway ground pressure monitoring method based on grating fiber sensor[J]. Coal Technology,2022,41(2):121-124.
    [8]
    汤树成,张杰,张恒,等. 光纤光栅传感技术在煤矿安全监测系统中的应用[J]. 工矿自动化,2014,40(7):41-44.

    TANG Shucheng,ZHANG Jie,ZHANG Heng,et al. Application of fiber gratting sensing technology in mine safety monitoring system[J]. Industry and Mine Automation,2014,40(7):41-44.
    [9]
    李锦辉, 张俊齐, 魏强, 等. 基于自感知FRP锚杆的隧道围岩变形监测与松动圈识别[J/OL]. 西南交通大学学报: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520. 1839.010.html.

    LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Tunnel surrounding rock deformation monitoring and loose zone identification based on self-sensing FRP anchor[J/OL]. Journal of Southwest Jiaotong University: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520.1839.010.html.
    [10]
    张宁博,王建达,秦凯,等. 基于一孔多点式应力与位移监测系统的掘进巷道冲击危险性评价[J]. 煤炭学报,2020,45(增刊1):140-149. doi: 10.13225/j.cnki.jccs.2019.0952

    ZHANG Ningbo,WANG Jianda,QIN Kai,et al. Evaluation of coal bump risk in excavation roadway based on multi-point stress and displacement monitoring system[J]. Journal of China Coal Society,2020,45(S1):140-149. doi: 10.13225/j.cnki.jccs.2019.0952
    [11]
    刘德军,张强勇,陈旭光,等. 深部巷道围岩破裂模型试验变形量测研究[J]. 四川大学学报(工程科学版),2010,42(4):71-77.

    LIU Dejun,ZHANG Qiangyong,CHEN Xuguang,et al. Study on deformation measurement in surrounding rock failure model test of deep roadway[J]. Journal of Sichuan University(Engineering Science Edition),2010,42(4):71-77.
    [12]
    侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6.

    HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.
    [13]
    朱少华,岳音,韩洪波,等. 光纤传感技术在相似材料模型试验中的应用[J]. 传感技术学报,2020,33(4):621-628. doi: 10.3969/j.issn.1004-1699.2020.04.022

    ZHU Shaohua,YUE Yin,HAN Hongbo,et al. Application of optical fiber sensing technology in similar materials model test[J]. Chinese Journal of Sensors and Actuators,2020,33(4):621-628. doi: 10.3969/j.issn.1004-1699.2020.04.022
    [14]
    刘少林,张丹,张平松,等. 基于分布式光纤传感技术的采动覆岩变形监测[J]. 工程地质学报,2016,24(6):1118-1125.

    LIU Shaolin,ZHANG Dan,ZHANG Pingsong,et al. Deformation monitoring of overburden based on distributed optical fiber sensing[J]. Journal of Engineering Geology,2016,24(6):1118-1125.
    [15]
    李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20. doi: 10.13272/j.issn.1671-251x.2015.11.005

    LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20. doi: 10.13272/j.issn.1671-251x.2015.11.005
    [16]
    孙健. 光纤光栅位移传感器在边坡监测中的应用研究[J]. 工矿自动化,2014,40(2):95-98. doi: 10.13272/j.issn.1671-251x.2014.02.025

    SUN Jian. Application research of fiber grating displacement sensor in slope monitoring[J]. Industry and Mine Automation,2014,40(2):95-98. doi: 10.13272/j.issn.1671-251x.2014.02.025
    [17]
    苏胜昔,杨昌民,范喜安. 光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J]. 工程力学,2014,31(增刊1):134-138,144.

    SU Shengxi,YANG Changmin,FAN Xi'an. Application of fiber Bragg grating sensor technology in highway tunnel surrounding rock deformation and real-time monitoring[J]. Engineering Mechanics,2014,31(S1):134-138,144.
    [18]
    何勇,姜帅,毛江鸿,等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程,2012,34(1):1-6.

    HE Yong,JIANG Shuai,MAO Jianghong,et al. Cracking monitoring method and experiment with distributed fiber sensor[J]. Journal of Civil,Architectural & Environmental Engineering,2012,34(1):1-6.
    [19]
    董鹏,夏开文,于长一,等. 浅埋隧道覆岩变形沉降的分布式光纤监测与分析[J]. 防灾减灾工程学报,2019,39(5):724-732. doi: 10.13409/j.cnki.jdpme.2019.05.005

    DONG Peng,XIA Kaiwen,YU Changyi,et al. Monitoring and analysis of stratum deformation and subsidence overlying a shallow tunnel using distributed optical fiber sensing technology[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(5):724-732. doi: 10.13409/j.cnki.jdpme.2019.05.005
    [20]
    刘泉声,王俊涛,肖龙鸽,等. OFDR光纤传感技术在十字岩柱暗挖法物理模型试验中的应用[J]. 岩石力学与工程学报,2017,36(5):1063-1075. doi: 10.13722/j.cnki.jrme.2016.0956

    LIU Quansheng,WANG Juntao,XIAO Longge,et al. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1063-1075. doi: 10.13722/j.cnki.jrme.2016.0956
    [21]
    张宇,史波,汤国强. 光纤光栅传感技术在洞室围岩变形监测中的应用[J]. 人民长江,2019,50(8):126-130. doi: 10.16232/j.cnki.1001-4179.2019.08.022

    ZHANG Yu,SHI Bo,TANG Guoqiang. Application of fiber grating sensing technology in deformation monitoring of cavern surrounding rock[J]. Yangtze River,2019,50(8):126-130. doi: 10.16232/j.cnki.1001-4179.2019.08.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (227) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return