Volume 49 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
LYU Pengfei, LU Kangbin, CAO Shubin, et al. Acoustic emission and fragment fractal characteristics of rock burst tendency coal samples under different strain rate loads[J]. Journal of Mine Automation,2023,49(1):123-130, 139.  doi: 10.13272/j.issn.1671-251x.2022050022
Citation: LYU Pengfei, LU Kangbin, CAO Shubin, et al. Acoustic emission and fragment fractal characteristics of rock burst tendency coal samples under different strain rate loads[J]. Journal of Mine Automation,2023,49(1):123-130, 139.  doi: 10.13272/j.issn.1671-251x.2022050022

Acoustic emission and fragment fractal characteristics of rock burst tendency coal samples under different strain rate loads

doi: 10.13272/j.issn.1671-251x.2022050022
  • Received Date: 2022-05-08
  • Rev Recd Date: 2022-12-27
  • Available Online: 2022-09-19
  • At present, the correlation analysis between the acoustic emission characteristics of the rock failure process and the fractal characteristics of sample fragments has been carried out. Some achievements have been obtained. But the quantitative description of the failure degree of coal samples with rock burst tendency under the condition of unidirectional loading with different strain rates and the quantitative relationship between the failure degree and the loading strain rate are few. In order to solve this problem, based on the MTS-C64. 106 electro-hydraulic servo system, the raw coal samples are subjected to uniaxial static load with different strain rates. In the test, the PCI-2 acoustic emission card is used to monitor the fracture process of the samples under load in real-time. The fractal theory is used to analyze the fracture fragments of the samples. The relationship between the fracture degree of the samples and the load strain rate is quantitatively evaluated. The results show the following points. ① On the basis of static load, the peak strength of sample failure increases with the increase of strain rate dynamic load. ② With the increase of the loading strain rate, the total number of AE decreases, and the number of high-energy AE events increases. The AE ringing count and energy amplitude undergo a consistent transition process of "slow increase-rapid increase-sudden increase." ③ The loading energy input rate of the sample is basically consistent with the increasing trend of acoustic emission ringing count and internal impact number. It will also experience the change of "slow increase-rapid increase-sudden increase." ④ The constant for the positive correlation between acoustic emission and vibration strength decreases with increasing loading strain rate. The constant which is negatively related to the ratio of the number of high and low energy vibrations, increases with increasing loading strain rate. The failure mode of the raw coal sample will experience a "shear failure - splitting failure - bursting failure" transformation. ⑤ When the loading strain rate is low, the upper part of the sample is destroyed. When the strain rate increases, the sample is gradually destroyed from the middle to the lower part. The failure process of the raw coal sample under the action of dynamic strain rate is mainly the brittle propagation behavior of cracks. ⑥ The fractal dimension of the impact fragment mass of the sample has a quadratic function relationship with the loading strain rate. There is an extreme value of the loading strain rate that maximizes the damage to the sample, with the test showing a strain rate extreme value of 2.8×10−3 s−1.

     

  • loading
  • [1]
    张茹, 艾婷, 高明忠, 等. 岩石声发射基础理论及试验研究[M]. 成都: 四川大学出版社, 2017.

    ZHANG Ru, AI Ting, GAO Mingzhong, et al. Basic Theory and experimental study of rock acoustic emission[M]. Chengdu: Sichuan University Press, 2017.
    [2]
    高保彬,钱亚楠,吕蓬勃. 加载速率对煤样破坏力学及声发射特征研究[J]. 地下空间与工程学报,2020,16(2):463-474.

    GAO Baobin,QIAN Yanan,LYU Pengbo. Study on failure mechanics and acoustic emission characteristics of coal sample under loading rate[J]. Chinese Journal of Underground Space and Engineering,2020,16(2):463-474.
    [3]
    曹安业,井广成,窦林名,等. 不同加载速率下岩样损伤演化的声发射特征研究[J]. 采矿与安全工程学报,2015,32(6):923-928,935.

    CAO Anye,JING Guangcheng,DOU Linming,et al. Damage evolution law based on acoustic emission of sandy mudstone under different uniaxial loading rate[J]. Journal of Mining & Safety Engineering,2015,32(6):923-928,935.
    [4]
    张黎明,任明远,马绍琼,等. 不同应力路径大理岩物理力学参数变化规律[J]. 地下空间与工程学报,2016,12(5):1288-1293,1325.

    ZHANG Liming,REN Mingyuan,MA Shaoqiong,et al. Study on the physical-mechanical parameters of marble under different stress paths[J]. Chinese Journal of Underground Space and Engineering,2016,12(5):1288-1293,1325.
    [5]
    张国凯,李海波,夏祥,等. 单轴加载条件下花岗岩声发射及波传播特性研究[J]. 岩石力学与工程学报,2017,36(5):1133-1144.

    ZHANG Guokai,LI Haibo,XIA Xiang,et al. Experiment study on acoustic emission and wave propagation in granite under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1133-1144.
    [6]
    张国凯,李海波,夏祥,等. 岩石细观结构及参数对宏观力学特性及破坏演化的影响[J]. 岩石力学与工程学报,2016,35(7):1341-1352.

    ZHANG Guokai,LI Haibo,XIA Xiang,et al. Effects of microstructure and micro parameters on macro mechanical properties and failure of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1341-1352.
    [7]
    张国凯,李海波,王明洋,等. 岩石单轴压缩下损伤表征及演化规律对比研究[J]. 岩土工程学报,2019,41(6):1074-1082.

    ZHANG Guokai,LI Haibo,WANG Mingyang,et al. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1074-1082.
    [8]
    陈宇龙,张宇宁,李科斌,等. 单轴压缩下软硬互层岩石破裂过程的离散元数值分析[J]. 采矿与安全工程学报,2017,34(4):795-802,816.

    CHEN Yulong,ZHANG Yuning,LI Kebin,et al. Distinct element numerical analysis of failure process of interlayered rock subjected to uniaxial compression[J]. Journal of Mining & Safety Engineering,2017,34(4):795-802,816.
    [9]
    陈宇龙,张玉. 加载速率对不同岩性岩石Kaiser效应影响[J]. 煤炭学报,2018,43(4):959-966.

    CHEN Yulong,ZHANG Yu. Influence of loading rate on the Kaiser effect for different lithological rocks[J]. Journal of China Coal Society,2018,43(4):959-966.
    [10]
    姚强岭,李学华,何利辉,等. 单轴压缩下含水砂岩强度损伤及声发射特征[J]. 采矿与安全工程学报,2013,30(5):717-722.

    YAO Qiangling,LI Xuehua,HE Lihui,et al. Strength deterioration and acoustic emission characteristics of water-bearing sandstone in uniaxial compressive experiment[J]. Journal of Mining & Safety Engineering,2013,30(5):717-722.
    [11]
    姚强岭,王伟男,杨书懿,等. 含水率影响下砂质泥岩直剪特性及声发射特征[J]. 煤炭学报,2021,46(9):2910-2922.

    YAO Qiangling,WANG Weinan,YANG Shuyi,et al. Direct shear and acoustic emission characteristics of sandy mudstone under the effect of moisture content[J]. Journal of China Coal Society,2021,46(9):2910-2922.
    [12]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305.

    XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283-1305.
    [13]
    刘少虹,潘俊锋,夏永学. 巨厚坚硬岩浆岩床破裂运动诱发冲击地压机制研究[J]. 岩石力学与工程学报,2019,38(3):499-510.

    LIU Shaohong,PAN Junfeng,XIA Yongxue. Study on induced mechanism of rock bursts by fracture movement of hard magmatic beds[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(3):499-510.
    [14]
    刘少虹,潘俊锋,王洪涛,等. 基于地震波和电磁波CT联合探测的采掘巷道冲击危险性评价方法[J]. 煤炭学报,2019,36(11):198-206.

    LIU Shaohong,PAN Junfeng,WANG Hongtao,et al. Assessment of rock burst risk in roadway based on the combination of seismic and electromagnetic wave CT technology[J]. Journal of China Coal Society,2019,36(11):198-206.
    [15]
    刘少虹,秦子晗,娄金福. 一维动静加载下组合煤岩动态破坏特性的试验分析[J]. 岩石力学与工程学报,2014,33(10):2064-2075.

    LIU Shaohong,QIN Zihan,LOU Jinfu. Experimental study of dynamic failure characteristics of coal-rock compound under one-dimensional static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2064-2075.
    [16]
    郑克洪. 基于X-Ray CT的煤矸颗粒细观结构及破损特性研究[D]. 徐州: 中国矿业大学, 2016.

    ZHENG Kehong. Study on mesostructure and damage characteristics for coal and gangue particles based on X-Ray CT[D]. Xuzhou: China University of Mining and Technology, 2016.
    [17]
    纪杰杰,李洪涛,吴发名,等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击,2020,39(13):176-183,214.

    JI Jiejie,LI Hongtao,WU Faming,et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock,2020,39(13):176-183,214.
    [18]
    何江,窦林名,王崧玮,等. 坚硬顶板诱发冲击矿压机理及类型研究[J]. 采矿与安全工程学报,2017,34(6):1122-1127.

    HE Jiang,DOU Linming,WANG Songwei,et al. Study on mechanism and types of hard roof inducing rock burst[J]. Journal of Mining & Safety Engineering,2017,34(6):1122-1127.
    [19]
    窦林名,贺虎,何江,等. 冲击危险评价的相对应力集中系数叠加法[J]. 煤炭学报,2018,43(2):327-332.

    DOU Linming,HE Hu,HE Jiang,et al. New method of rockburst risk assessment using relative stress concentration factor superposition[J]. Journal of China Coal Society,2018,43(2):327-332.
    [20]
    刘少虹,潘俊锋,王洪涛,等. 基于冲击启动过程的近场围岩冲击危险性电磁波CT评估方法[J]. 煤炭学报,2019,44(2):384-396.

    LIU Shaohong,PAN Junfeng,WANG Hongtao,et al. Electromagnetic wave CT evaluation method for rock burst hazard in near field based on rock burst start-up process[J]. Journal of China Coal Society,2019,44(2):384-396.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (172) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return