Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHANG Kai, LIU Zhigeng, YUAN Xiaoming, et al. Analysis of the status and framework design of intelligentcoal mine auxiliary transportation system[J]. Journal of Mine Automation,2022,48(6):27-35.  doi: 10.13272/j.issn.1671-251x.2022010052
Citation: CHANG Kai, LIU Zhigeng, YUAN Xiaoming, et al. Analysis of the status and framework design of intelligent coal mine auxiliary transportation system[J]. Journal of Mine Automation,2022,48(6):27-35.  doi: 10.13272/j.issn.1671-251x.2022010052

Analysis of the status and framework design of intelligentcoal mine auxiliary transportation system

doi: 10.13272/j.issn.1671-251x.2022010052
  • Received Date: 2022-01-25
  • Rev Recd Date: 2022-06-05
  • Available Online: 2022-04-11
  • This paper introduces the development and application status of intelligent auxiliary transportation technology in open-pit coal mine and underground coal mines at home and abroad. The intelligent auxiliary transportation system of open-pit coal mine has realized the functions of unmanned driving, automatic loading, automatic unloading, active obstacle avoidance and intelligent dispatching of mining trucks in fixed sections. And the system has achieved good application results in engineering practice. At present, the auxiliary transportation intelligence of underground coal mine is still in the development stage of single machine intelligence of equipment. The intelligent auxiliary transportation system integrating vehicle scheduling, operation status monitoring, traffic command, material control and other functions has not yet been formed. The main problems of intelligent auxiliary transportation system in underground coal mine are analyzed. The underground positioning system has low precision and poor real-time performance. The dispatching system function lacks effective integration. The driving assistance system module is not perfect. The unmanned driving technology lags behind and the test conditions are lacking. Based on the relevant requirements of intelligent auxiliary transportation in Coal Mine Intelligent Construction Guide (2021 edition), this paper puts forward the overall goal of the construction of intelligent auxiliary transportation. According to the overall goal, the intelligent coal mine auxiliary transportation system framework is designed. ① Coding and centralized loading transportation of materials realizes the whole process information management and control of materials from storage, coding, loading, transportation, unloading and recycling. ② Automatic loading and unloading and automatic connection realizes the automatic transfer and connection of materials among rail locomotives, monorail cranes, trackless and other different auxiliary transportation modes. ③ Accurate positioning and intelligent navigation achieves accurate real-time positioning, route planning and real-time navigation of personnel and transportation equipment. ④ Intelligent vehicle dispatching realizes the functions of auxiliary transportation comprehensive information display, data transmission, status monitoring, dispatching command and health management. ⑤ Driving assistance system builds several intelligent subsystems, such as anti fatigue driving warning, 360° panoramic look around monitoring, collision prevention, traffic sign identification, auxiliary braking for downhill driving, adaptive lighting, etc. Driving assistance system improves the safety of locomotive operation. ⑥ The auxiliary operation robot realizes the robot automatic operation of underground auxiliary operation scenes. The auxiliary operation robot reduces the number of personnel and improves the overall automation level of auxiliary operation. ⑦ Unmanned driving realizes the normal unmanned driving operation of locomotives in underground coal mine. The research can provide reference for the construction and development of intelligent auxiliary transportation system.

     

  • loading
  • [1]
    王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [2]
    刘伟芳,吴迪. 国内外露天矿山无人驾驶技术发展现状[J]. 露天采矿技术,2020,35(4):32-34,38.

    LIU Weifang,WU Di. Technology development status of unmanned driving in open-pit mines at home and abroad[J]. Opencast Mining Technology,2020,35(4):32-34,38.
    [3]
    李庆玲,张慧祥,赵旭阳,等. 露天矿无人驾驶自卸卡车发展综述[J]. 煤炭工程,2021,53(2):29-34.

    LI Qingling,ZHANG Huixiang,ZHAO Xuyang,et al. Overview of unmanned mining trucks in open-pit mine[J]. Coal Engineering,2021,53(2):29-34.
    [4]
    赵浩,毛开江,曲业明,等. 我国露天煤矿无人驾驶及新能源卡车发展现状与关键技术[J]. 中国煤炭,2021,47(4):45-50. doi: 10.3969/j.issn.1006-530X.2021.04.007

    ZHAO Hao,MAO Kaijiang,QU Yeming,et al. Development status and key technology of driverless and new energy trucks in open-pit coal mine in China[J]. China Coal,2021,47(4):45-50. doi: 10.3969/j.issn.1006-530X.2021.04.007
    [5]
    高金龙,蔡明祥,王识辉. 准东露天煤矿5G+卡车无人驾驶技术应用试验[J]. 露天采矿技术,2021,36(5):39-42.

    GAO Jinlong,CAI Mingxiang,WANG Shihui. Application test of 5G + truck driverless technology in Zhundong Open-pit Coal Mine[J]. Opencast Mining Technology,2021,36(5):39-42.
    [6]
    丁守坤. 煤矿井下车辆信息化调度系统设计[J]. 煤矿机电,2019,40(4):20-23.

    DING Shoukun. Design of information dispatching system of underground coal mine vehicles[J]. Colliery Mechanical & Electrical Technology,2019,40(4):20-23.
    [7]
    陈寇忠. 矿用支架搬运车防人员接近系统研究[J]. 煤矿机电,2021,42(3):64-67.

    CHEN Kouzhong. Research on personnel approaching prevention system of mining support carrier[J]. Colliery Mechanical & Electrical Technology,2021,42(3):64-67.
    [8]
    贺海涛, 廖志伟, 郭卫. 煤矿井下无轨胶轮车无人驾驶技术研究与探索[J/OL]. 煤炭科学技术: 1-12[2022-05-19]. https://doi. org/10.13199/j.cnki.cst.2022-0594.

    HE Haitao, LIAO Zhiwei, GUO Wei. Research and exploration on driverless technology of trackless rubber tyred vehicle in coal mine[J/OL]. Coal Science and Technology: 1-12 [2022-05-19]. https://doi.org/10.13199/j.cnki.cst.2022-0594.
    [9]
    孙占成,顾根龙. 矿用无轨胶轮车失速保护系统的应用研究[J]. 同煤科技,2017(3):28-30.

    SUN Zhancheng,GU Genlong. Application study on the stall protection system of trackless rubber tire vehicle used in mines[J]. Tongmei Keji,2017(3):28-30.
    [10]
    常琳. 煤矿井下无线定位技术及系统的应用现状和发展方向[J]. 煤矿安全,2021,52(7):94-98.

    CHANG Lin. Application status and development direction of wireless positioning technology and system in underground coal mine[J]. Safety in Coal Mines,2021,52(7):94-98.
    [11]
    鲍文亮. 煤矿用无人驾驶辅助运输车辆的蒙特卡罗定位方法[J]. 煤炭科学技术,2021,49(11):211-217.

    BAO Wenliang. Monte Carlo localization for autonomous auxiliary transport vehicles used in coal mine[J]. Coal Science and Technology,2021,49(11):211-217.
    [12]
    程平, 李晓光, 顾清华, 等. 露天矿新能源纯电动卡车的智能调度优化及应用[J/OL]. 金属矿山: 1-11[2022-05-31]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html.

    CHENG Ping, LI Xiaoguang, GU Qinghua, et al. Intelligent scheduling optimization and application of new energy electric truck in open-pit mine[J/OL]. Metal Mine: 1-11 [2022-05-31]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html.
    [13]
    王星,武讲,张阳,等. 基于露天煤矿高精三维地图的智能调度技术[J]. 露天采矿技术,2021,36(6):28-31.

    WANG Xing,WU Jiang,ZHANG Yang,et al. Intelligent scheduling technology based on high-precision 3D map of open-pit mine[J]. Opencast Mining Technology,2021,36(6):28-31.
    [14]
    孙中飞,王吉洋,刘建彬. 车辆驾驶辅助预警系统在露天煤矿的应用[J]. 中国煤炭工业,2020(增刊1):12-14.

    SUN Zhongfei,WANG Jiyang,LIU Jianbin. Application of vehicle-assisted early warning system in open-pit coal mine[J]. China Coal Industry,2020(S1):12-14.
    [15]
    陈相蒙,王恩标,王刚. 煤矿电机车无人驾驶技术研究[J]. 煤炭科学技术,2020,48(增刊2):159-164.

    CHEN Xiangmeng,WANG Enbiao,WANG Gang. Research on electric locomotive self-driving technology in coal mine[J]. Coal Science and Technology,2020,48(S2):159-164.
    [16]
    袁晓明,郝明锐. 煤矿无轨辅助运输无人驾驶关键技术与发展趋势研究[J]. 智能矿山,2020,1(1):89-97.

    YUAN Xiaoming,HAO Mingrui. Key technology and development trend of mine auxiliary transport autonomous vehicle[J]. Journal of Intelligent Mine,2020,1(1):89-97.
    [17]
    王陈,鲍久圣,袁晓明,等. 无轨胶轮车井下无人驾驶系统设计及控制策略研究[J]. 煤炭学报,2021,46(增刊1):520-528.

    WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al. Design and control strategy of underground driverless system for trackless rubber tire vehicle[J]. Journal of China Coal Society,2021,46(S1):520-528.
    [18]
    国家能源局, 国家矿山安全监察局. 煤矿智能化建设指南(2021年版)[EB/OL]. (2021-06-05)[2021-12-15]. http://zfxxgk.nea.gov.cn/2021-06/05/c_1310015723.htm.

    National Energy Administration, National Mine Safety Administration. Coal Mine Intelligent Construction Guide(2021 edition)[EB/OL]. (2021-06-05)[2021-12-15]. http://zfxxgk.nea.gov.cn/2021-06/05/c_1310015723.htm.
    [19]
    王国法,庞义辉,刘峰,等. 智能化煤矿分类、分级评价指标体系[J]. 煤炭科学技术,2020,48(3):1-13.

    WANG Guofa,PANG Yihui,LIU Feng,et al. Specification and classification grading evaluation index system for intelligent coal mine[J]. Coal Science and Technology,2020,48(3):1-13.
    [20]
    王国法,杜毅博. 煤矿智能化标准体系框架与建设思路[J]. 煤炭科学技术,2020,48(1):1-9.

    WANG Guofa,DU Yibo. Coal mine intelligent standard system framework and construction ideas[J]. Coal Science and Technology,2020,48(1):1-9.
    [21]
    崔腾飞,郑志龙,孙虎伟. 矿用物资运输集装箱换装模式在高河能源的应用[J]. 煤,2017,26(4):46-47. doi: 10.3969/j.issn.1005-2798.2017.04.016

    CUI Tengfei,ZHENG Zhilong,SUN Huwei. Application of container reloading mode of mining materials transportation in Gaohe Energy[J]. Coal,2017,26(4):46-47. doi: 10.3969/j.issn.1005-2798.2017.04.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (561) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return