Volume 48 Issue 5
May  2022
Turn off MathJax
Article Contents
CHAI Jing, QIAO Yu, GAO Shigang, et al. Roof stability evaluation of large section open-off cut in lower slice of slicing mining[J]. Journal of Mine Automation,2022,48(5):21-31.  doi: 10.13272/j.issn.1671-251x.2021110029
Citation: CHAI Jing, QIAO Yu, GAO Shigang, et al. Roof stability evaluation of large section open-off cut in lower slice of slicing mining[J]. Journal of Mine Automation,2022,48(5):21-31.  doi: 10.13272/j.issn.1671-251x.2021110029

Roof stability evaluation of large section open-off cut in lower slice of slicing mining

doi: 10.13272/j.issn.1671-251x.2021110029
  • Received Date: 2021-11-12
  • Rev Recd Date: 2022-04-02
  • Available Online: 2022-03-23
  • In order to study the roof stability of large-section open-off cut in lower slice of slicing mining, the 14 boreholes in the top coal of the 203 open-off cut in the lower slice of 1−2 coal seam in Huojitu Mine of Daliuta Mine is taken as the research background. The influence of the upper slice mining and the lower slice open-off cut driving on the plastic zone of the top coal of the open-off cut is analyzed by theoretical analysis, numerical simulation and field borehole peep technology. And the stability of the roof structure is evaluated by the rock mass integrity index. From the perspective of the top coal structure form, the top coal of the open-off cut is partially over-excavated or under-excavated due to the upper slicing mining. The maximum over-excavation of the open-off cut is 1.2 m, the maximum under-excavation is 0.8 m, and top-coal uneven rate is 27.7%. The result of theoretical analysis show that due to the influence of upper slice mining of the top coal of the open-off cut, the depth of plastic zone in the floor is 2.02 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the plastic zone in the top coal is 1.50 m. Borehole peep results show that the plastic zone of the open-off cut top coal is divided into the theoretical plastic zone and the measured plastic zone according to the theoretical calculation and borehole peep respectively. Due to the influence of upper slice mining, the depth of the measured plastic zone in the floor is 1.06-2.04 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of the measured plastic zone in the top coal is 0.34-1.50 m. The measured plastic zone caused by the influence of upper slice mining on floor is 17.63% smaller than the theoretical plastic zone. The measured plastic zone of the top coal caused by the disturbance of lower slice mining of the open-off cut is 25.82% smaller than the theoretical plastic zone. The result of numerical simulation analysis shows that due to the influence of upper slice mining, the depth of plastic zone in the floor is 1-2 m. Due to the disturbance of the lower slice mining of the open-off cut, the depth of plastic zone in the top coal is 1 m. The results obtained by the above three methods are highly consistent. The stability evaluation results of the top coal in the open-off cut show that the top coal integrity index ranges from 42.9% to 87.9%. The top coal thickness is positively correlated with the integrity index and negatively correlated with the fracture development. The proportion of top coal integrity evaluation as good or above is more than 1/2, indicating that the overall structure of top coal is basically complete. The research results can provide reference for the design of top coal thickness retention standard and support scheme of large section open-off cut in lower slice of slicing mining under similar mining conditions.

     

  • loading
  • [1]
    常立宗,苏学贵,杜献杰,等. 高应力区巷道支护结构采动破坏特征研究[J]. 工矿自动化,2021,47(3):20-26.

    CHANG Lizong,SU Xuegui,DU Xianjie,et al. Research on mining damage characteristics of roadway support structure in high stress area[J]. Industry and Mine Automation,2021,47(3):20-26.
    [2]
    杨真,杨永亮,郭瑞瑞,等. 开采厚度对沿空掘巷围岩稳定性的影响分析[J]. 工矿自动化,2021,47(2):38-44.

    YANG Zhen,YANG Yongliang,GUO Ruirui,et al. Analysis of the influence of mining thickness on the stability of surrounding rock of goaf-side roadway driving[J]. Industry and Mine Automation,2021,47(2):38-44.
    [3]
    李颜,高召宁,陈登国,等. 锚固承载层作用下巷道围岩稳定性分析[J]. 工矿自动化,2021,47(4):85-91.

    LI Yan,GAO Zhaoning,CHEN Dengguo,et al. Stability analysis of roadway surrounding rock under the action of bolt bearing layer[J]. Industry and Mine Automation,2021,47(4):85-91.
    [4]
    何富连,许磊,吴焕凯,等. 厚煤顶大断面切眼裂隙场演化及围岩稳定性分析[J]. 煤炭学报,2014,33(2):336-346.

    HE Fulian,XU Lei,WU Huankai,et al. Fracture field evolution and stability analysis of surrounding rock in thick coal roof large-section open-off cut[J]. Journal of China Coal Society,2014,33(2):336-346.
    [5]
    张斌,苏学贵,段振雄,等. 受掘进扰动影响的巷道围岩稳定性控制研究[J]. 矿业安全与环保,2020,47(6):19-24,31.

    ZHANG Bin,SU Xuegui,DUAN Zhenxiong,et al. Study on stability control of surrounding rock of roadway affected by driving disturbance[J]. Mining Safety & Environmental Protection,2020,47(6):19-24,31.
    [6]
    杨朋,华心祝,杨科,等. 深井复合顶板条件下沿空留巷顶板变形特征试验及控制对策[J]. 采矿与安全工程学报,2017,34(6):1067-1074.

    YANG Peng,HUA Xinzhu,YANG Ke,et al. Experiment of compound roof deformation characteristics of gob-side retaining entry in deep mine and support measures[J]. Journal of Mining & Safety Engineering,2017,34(6):1067-1074.
    [7]
    张百胜. 极近距离煤层开采围岩控制理论及技术研究[D]. 太原: 太原理工大学, 2008.

    ZHANG Baisheng. Study on the surrounding rock control theory and theory and technology of ultra-close multiple-seams mining[D]. Taiyuan: Taiyuan University of Technology, 2008.
    [8]
    张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990(2):46-55. doi: 10.3321/j.issn:0253-9993.1990.02.002

    ZHANG Jincai,LIU Tianquan. On depth of fissrued zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990(2):46-55. doi: 10.3321/j.issn:0253-9993.1990.02.002
    [9]
    张文彬. 综采放顶煤工作面底板应力及其破坏深度分析[J]. 煤炭科学技术,2010,38(12):17-21.

    ZHANG Wenbin. Analysis on floor stress and failure depth of fully mechanized top coal caving mining face[J]. Coal Science and Technology,2010,38(12):17-21.
    [10]
    张召千,徐明德,刘泉声. 煤巷围岩稳定性加权平均评价方法研究[J]. 岩土力学,2009,30(11):3464-3468. doi: 10.3969/j.issn.1000-7598.2009.11.041

    ZHANG Zhaoqian,XU Mingde,LIU Quansheng. The research on the methodology of weighted average evaluation for surrounding rock stability of tunnel[J]. Rock and Soil Mechanics,2009,30(11):3464-3468. doi: 10.3969/j.issn.1000-7598.2009.11.041
    [11]
    杨仁树,王茂源,马鑫民,等. 煤巷围岩稳定性分类研究[J]. 煤炭科学技术,2015,43(10):40-45,92.

    YANG Renshu,WANG Maoyuan,MA Xinmin,et al. Research on surrounding rock stability classification of coal drift[J]. Coal Science and Technology,2015,43(10):40-45,92.
    [12]
    耿越,段迎娟,任家敏. 煤巷顶板稳定性评价方法研究[J]. 工矿自动化,2018,44(6):35-39.

    GENG Yue,DUAN Yingjuan,REN Jiamin. Research on roof stability assessment method of coal roadway[J]. Industry and Mine Automation,2018,44(6):35-39.
    [13]
    吕情绪,董俊亮,柴敬. 分层开采采空区下大断面切眼支护[J]. 科学技术与工程,2021,21(20):8395-8402. doi: 10.3969/j.issn.1671-1815.2021.20.015

    LYU Qingxu,DONG Junliang,CHAI Jing. Support of large section off cut under goaf in slicing mining[J]. Science Technology and Engineering,2021,21(20):8395-8402. doi: 10.3969/j.issn.1671-1815.2021.20.015
    [14]
    尚奇. 1 m近距离煤层采空区下回采巷道应力场分布及支护技术研究[D]. 太原: 太原理工大学, 2018.

    SHANG Qi. Study on the stress field distribution & supporting technology for mining roadway under goaf in 1 m close distance coal seams mining[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [15]
    赵通. 虎峰煤业厚煤层遗煤复采的关键开采参数及围岩控制技术研究[D]. 太原: 太原理工大学, 2018.

    ZHAO Tong. Study on the key mining parameters and the surrounding rock control technology of the remaining coal in the thick seam of Hufeng Coal[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [16]
    聂百胜,张辉,崔树江,等. 前视钻孔窥视视频提取钻孔信息的方法与应用[J]. 煤炭学报,2016,41(5):1316-1322.

    NIE Baisheng,ZHANG Hui,CUI Shujiang,et al. Extraction method of borehole panoramic image from televiewer video[J]. Joural of China Coal Society,2016,41(5):1316-1322.
    [17]
    王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. 岩土力学,2010,31(4):1326-1330. doi: 10.3969/j.issn.1000-7598.2010.04.055

    WANG Chuanying,HU Peiliang,SUN Weichun. Method for evaluating rock mass integrity based on borehole camera technology[J]. Rock and Soil Mechanics,2010,31(4):1326-1330. doi: 10.3969/j.issn.1000-7598.2010.04.055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (152) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return