Volume 48 Issue 5
May  2022
Turn off MathJax
Article Contents
SI Weibin, MA Kexiang, LEI Zhirong, et al. Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer[J]. Journal of Mine Automation,2022,48(5):85-92.  doi: 10.13272/j.issn.1671-251x.2021110024
Citation: SI Weibin, MA Kexiang, LEI Zhirong, et al. Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer[J]. Journal of Mine Automation,2022,48(5):85-92.  doi: 10.13272/j.issn.1671-251x.2021110024

Flexible arc suppression method for single-phase to ground fault in distribution network based on Z-type grounding transformer

doi: 10.13272/j.issn.1671-251x.2021110024
  • Received Date: 2021-11-10
  • Rev Recd Date: 2022-04-24
  • Available Online: 2022-03-05
  • The coal mine power supply and distribution system usually adopts the neutral point non-effectively grounded method. Most of the power supply lines in this method use cable lines. The underground power supply system is complex and uses many voltage levels. When a single-phase to ground fault occurs, it is easy to form intermittent arcs at the grounding point. Moreover, the existing single-phase to ground fault arc suppression technology of the neutral point non-effectively grounded distribution network has the problem of poor arc suppression effect and difficulty in accurately measuring the parameters of the distribution network to the ground. The most common connection method of transformer winding in 10 kV substation of coal mine in China is delta connection. This mode needs to lead out neutral point and connect arc suppression coil artificially through special grounding transformer (mostly Z-type grounding transformer). In order to solve the above problems, a flexible arc suppression system for single-phase to ground fault of distribution network based on Z-type grounding transformer is designed. When the initial time of grounding fault occurs in the distribution network, the three-phase power supply electromotive force and the neutral point voltage of the power distribution network are firstly measured in real time. When the amplitude of the neutral point voltage is greater than 15% of the three-phase power supply electromotive force, it can be judged as a grounding fault. Compared with the three-phase power supply electromotive force, the phase with the smallest power supply electromotive force is the fault phase. After a single-phase to ground fault occurs, the fast switching switch corresponding to the fault phase is quickly closed. And the active inverter and the Z-type grounding transformer power conversion module are simultaneously put into operation. The Z-type grounding transformer power conversion module clamps the voltage of a neutral point in an opposite phase to be close to the electromotive force of the fault phase power supply. And the amplitude and the phase of the difference between the neutral voltage and the fault phase supply voltage are precisely compensated by the active inverter. Therefore, the control target of suppressing the voltage and the current at the fault point to zero is achieved. After a certain time delay, the fast switching switch is cut off. If the voltage of the neutral point is effectively reduced, it can be judged that the fault is a transient ground fault. And the normal operation of the power distribution network system can be restored. Otherwise, it is judged as a permanent fault. The measures to isolate the fault feeder are taken to restore the normal operation of the distribution network. The simulation results show that when the single-phase to ground fault transition resistance is 500 Ω and 3 000 Ω, the power conversion is only through the Z-type grounding transformer. The voltage and current suppression rate at the fault point reaches 79%-83%, which cannot fully achieve the effect of arc suppression. The flexible arc suppression system can effectively suppress the voltage and current at the fault point, with a suppression rate of more than 98%, realizing reliable arc suppression of single-phase to ground faults in the distribution network.

     

  • loading
  • [1]
    罗超,耿蒲龙,曲兵妮,等. 矿井供电系统单相接地故障零模特征仿真研究[J]. 工矿自动化,2018,44(6):57-63.

    LUO Chao,GENG Pulong,QU Bingni,et al. Simulation research on zero-module characteristics of single-phase grounding fault in mine power supply system[J]. Industry and Mine Automation,2018,44(6):57-63.
    [2]
    司韶文. 煤矿电网单相间歇性电弧接地故障的研究[D]. 西安: 西安科技大学, 2021.

    SI Shaowen. Research of single-phase intermittent arc ground failure in coal distribution network[D]. Xi'an: Xi'an University of Science and Technology, 2021.
    [3]
    要焕年, 曹梅月. 电力系统谐振接地[M]. 北京: 中国电力出版社, 2009.

    YAO Huannian, CAO Meiyue. Resonant grounding of power system[M]. Beijing: China Power Press, 2009.
    [4]
    宗伟林,许文强,原亚雷,等. 矿井配电网单相接地故障选线与定位新方法[J]. 工矿自动化,2016,42(11):45-50.

    ZONG Weilin,XU Wenqiang,YUAN Yalei,et al. A new type of single-phase grounding fault line selection and location method for mine distribution network[J]. Industry and Mine Automation,2016,42(11):45-50.
    [5]
    苏展,于绍峰,王洋. Z型联结组别接地变低压核相异常分析[J]. 变压器,2021,58(10):30-33.

    SU Zhan,YU Shaofeng,WANG Yang. Analysis of abnormal low-voltage phase check situation of Z-type grounding transformer[J]. Transformer,2021,58(10):30-33.
    [6]
    郭谋发,游建章,张伟骏,等. 基于三相级联H桥变流器的配电网接地故障分相柔性消弧方法[J]. 电工技术学报,2016,31(17):11-22. doi: 10.3969/j.issn.1000-6753.2016.17.002

    GUO Moufa,YOU Jianzhang,ZHANG Weijun,et al. Separate-phase flexible arc-suppression method of earth-fault in distribution systems based on three-phase cascaded H-bridge converter[J]. Transactions of China Electrotechnical Society,2016,31(17):11-22. doi: 10.3969/j.issn.1000-6753.2016.17.002
    [7]
    贠保记,马柯翔,司渭滨,等. 配电网单相接地故障的柔性熄弧装置[J]. 电力系统保护与控制,2021,49(19):124-134.

    YUN Baoji,MA Kexiang,SI Weibin,et al. Flexible arc extinguishing device for a single-phase ground fault in a distribution network[J]. Power System Protection and Control,2021,49(19):124-134.
    [8]
    曾祥君,卓超,喻锟,等. 基于接地变压器绕组分档调压干预的配电网主动降压消弧与保护新方法[J]. 中国电机工程学报,2020,40(5):1523-1534.

    ZENG Xiangjun,ZHUO Chao,YU Kun,et al. A novel method of faults arc extinguishing and feeder protection based on voltage regulating intervention with grounding transformer winding taps for distribution networks[J]. Proceedings of the CSEE,2020,40(5):1523-1534.
    [9]
    郭谋发,陈静洁,张伟骏,等. 基于单相级联H桥变流器的配电网故障消弧与选线新方法[J]. 电网技术,2015,39(9):2677-2684.

    GOU Moufa,CHEN Jingjie,ZHANG Weijun,et al. A novel approach for fault arc extinguishing and feeder selection in distribution networks based on single-phase cascade H-bridge converter[J]. Power System Technology,2015,39(9):2677-2684.
    [10]
    刘宝稳,马宏忠,沈培锋,等. 新型接地故障基波电流全补偿柔性控制系统[J]. 中国电机工程学报,2016,36(9):2322-2330.

    LIU Baowen,MA Hongzhong,SHEN Peifeng,et al. New flexible control system of full compensation single-phase ground fault fundamental current[J]. Proceedings of the CSEE,2016,36(9):2322-2330.
    [11]
    王崇林,刘建华. 三相五柱式消弧线圈及其自动跟踪补偿原理[J]. 中国矿业大学学报,1999,28(5):57-61.

    WANG Chonglin,LIU Jianhua. Arc suppression coil with three phases and five columns and its automatic compensation principle[J]. Journal of China University of Mining & Technology,1999,28(5):57-61.
    [12]
    曾祥君,胡京莹,王媛媛,等. 基于柔性接地技术的配电网三相不平衡过电压抑制方法[J]. 中国电机工程学报,2014,34(4):678-684.

    ZENG Xiangjun,HU Jingying,WANG Yuanyuan,et al. Suppressing method of three-phase unbalanced overvoltage based on distribution networks flexible grounding control[J]. Proceedings of the CSEE,2014,34(4):678-684.
    [13]
    蒋仁江,英云龙,秦志成,等. Z型接地变压器在PSCAD下的仿真模型构建[J]. 价值工程,2015,34(29):137-138.

    JIANG Renjiang,YING Yunlong,QIN Zhicheng,et al. Simulation model of zigzag grounding transformer by PSCAD[J]. Value Engineering,2015,34(29):137-138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (172) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return